

Rechargeable Lithium-Air Batteries

Introduction

The rechargeable Li-O₂ battery has the potential to be used for long range EVs. The practical energy density of a Li-O₂ battery is expected to be ~ 800 Wh/kg. The advantages of Li-O₂ batteries come from their open structure; that is, they can absorb the active cathode material (oxygen) from the surrounding environment instead of carrying it within the batteries. However, the open structure of Li-O₂ batteries also leads to several disadvantages. The energy density of Li-O₂ batteries will be much lower if oxygen has to be provided by an onboard container. Although significant progresses have been made in recent years on the fundamental properties of Li-O₂ batteries.

Project objective

The main goal of the project is to provide a better understanding on the fundamental reaction mechanisms of Li-O₂ batteries and identify the required components (especially electrolytes and electrodes) for stable operation of Li-O₂ batteries. PNNL researchers will investigate stable electrolytes and oxygen evolution reaction (OER) catalysts to reduce the charging overvoltage of Li-O₂ batteries and improve their cycling stability. New electrolytes will be combined with stable air electrodes to ensure their stability during Li-O₂ reaction.

Main Achievements

- Developed hierarchically porous graphene as a Li-O₂ battery electrode with an extremely high capacity (>15,000 mAh/g-carbon).
- Identified LiTf as the most stable salt for rechargeable Li-O₂ batteries.
- Identified polyethylene as the most stable polymer binder for air electrodes.
- Used *ex situ* EPR to confirm the formation of superoxide radical anion during oxygen reduction and the direct decomposition of Li₂O₂ into Li⁺ and oxygen during charging.
- Demonstrated the high concertaration electrolyte can greatly enhance the cycling stability of Li-O₂ batteries
- Developed *In Situ* grown ZnCo₂O₄ on single walled carbon nanotubes as air electrode materials for rechargeable Li-O₂ batteries

Fig. 1. (a) Images of cycled Li metal and air electrode. (b) Voltage vs. capacity of a $Li-O_2$ cell and (c) comparison of cell capacity using different electrolytes.

Contact: Dr. Ji-Guang Zhang, <u>jiguang.zhang@pnnl.gov</u> **Sponsoring Agency:** DOE/EERE/VTO/BMR program

Selected Publications

- 1) B. Liu, W. Xu, P. Yan, X. Sun, M. E. Bowden, J. Read, J. Qian, D. Mei, C.-M. Wang, J.-G. Zhang, "Enhanced cycling stability of rechargeable Li-O₂ batteries using high-concentration electrolytes", *Adv. Funct. Mater.*, 2016, **26**, 605-13.
- B. Liu, W. Xu, P. Yan, P. Bhattacharya, R. Cao, E. Bowden, M. H. Engelhard, C.-M. Wang, J.-G. Zhang, "In situ-grown ZnCo₂O₄ on single-walled carbon nanotubes as air electrode materials for rechargeable lithium-oxygen batteries", *ChemSusChem*, 2015, 8, 3697-3703.
- E. Nasybulin, W. Xu, B. L. Mehdi, E. Thomsen, M. H. Engelhard, R. C. Masse, P. Bhattacharya, M. Gu, W. Bennett, Z. Nie, C. Wang, N. G. Browning, J.-G. Zhang, "Formation of interfacial layer and long-term cyclability of Li-O₂ batteries", *ACS Appl. Mater. Interfaces*, 2014, 6, 14141-14151.
- 4) E. Nasybulin, W. Xu, M. H. Engelhard, Z. Nie, X. S. Li, J.-G. Zhang, "Stability of polymer binders in Li-O₂ batteries", *J. Power Sources*, 2013, **243**, 899-907.
- E. Nasybulin, W. Xu, M. H. Engelhard, Z. Nie, S. D. Burton, L. Cosimbescu, M. E. Gross, J.-G. Zhang, "Effects of electrolyte salts on the performance of Li-O₂ batteries, *J. Phys. Chem. C*, 2013, **117**, 2635-2645.