

Non-Wire Methods for Transmission Congestion Management Through Predictive Simulation and Optimization

Zhenyu (Henry) Huang, Ruisheng Diao, Yuri V. Makarov, Shuangshuang Jin, Yousu Chen, Pacific Northwest National Laboratory (PNNL)

Partners: Quanta Technology, PowerWorld Corporation, and Bonneville Power Administration

Critical Need

- » On the U.S. power grid, transmission congestion:
 - Incurs significant economic costs—The New York ISO experienced more than \$1.1 billion in congestion costs in 2010
 - Prevents renewable integration
 - Becomes worse and more complicated due to uncertain and stochastic power flow patterns caused by new generation and demand response.

- » Building more transmission lines to address congestion faces significant challenges:
 - Transmission build-out lags behind load growth
 - Additional constraints exist, including financial and cost-recovery issues, right-of-way, and environmental considerations.

- » The current "path rating" practice used to manage electricity flow and congestion is based on conservative ratings from offline studies using worstcase scenarios. This approach is causing artificial congestion.
 - Involves many runs of transient stability and voltage stability simulations
 - ->24 hours for one path rating.

Our Solution

PNNL and partners, using advanced computingbased methods, are developing a real-time path rating prototype tool. This innovation will tap unused capacities, enable optimal use of transmission assets and reduce the need for building new transmission lines.

- » Short-term goal: Develop technologies that determine the amount of unused capacity, in real time, by reducing computation time from hours to 10 minutes
- » Long-term goal: Integrate unused capacities in power grid operation and markets.

Diagram conveys how measurements and forecasts are translated into a realistic path rating that maximizes use of transmission assets and relieves congestion.

Proposed Technologies

- » Develop High Performance Computing (HPC)based transient and voltage stability simulation with innovative mathematical methods
- » Develop HPC-based real-time path rating capability
- » Demonstrate the non-wire method on a commercial software platform with real-life power system scenarios.

Proposed Targets

Metric	State-of-the-Art	Proposed
Simulation speed	3-5 times slower than real time	10-20 times faster than real time
Path rating study interval	Months	<10 minutes
Asset utilization	Conservative	Enhanced by ~30%

Results to Date

Massive Contingency Analysis

Goal: Evenly allocate contingency scenarios across available computing processors.

- » Approach: Dynamic computational load balancing with a global counter
 - Implemented in $\mathbf{Grid}\mathbf{PACK^{\text{TM}}}$
 - Tested with 400 contingencies of a WECC-size system with near-linear speedup

For additional information contact:

Henry Huang, zhenyu.huang@pnnl.gov

- 12.7s to complete 400 contingencies using 400 processors.

Parallel Transient Simulation

Goal: Obtain 10x speedup compared to today's commercial tool.

- » Key algorithms:
 - Decoupled models for calculating states in parallel
 - Identified KLU linear solver for solving network coupling
 - 15.8s to complete one 30s dynamic simulation for a WECC-size model with 8 processors.

Fast Voltage Stability Simulation

Goal: Develop a non-iterative method to find voltage stability boundaries.

- » Approach: Combination of several methods: Continuation power flow; X-ray theorem; Orbiting method; High-order numerical method
 - Validated accuracy against PowerWorld
 - Used only 9.5s to find a new boundary point after initial point is identified for a WECC-size model, 10.64 times faster than today's approach.

Proudly Operated by Battelle Since 1965