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Abstract—The future power grid will need to incorporate
systems and processes with a higher degree of variability and
randomness due to the penetration of renewable energy resources
and the increase of energy demand. Forecasting variables in
a more uncertain environment poses new challenges and revi-
sions of the existing forecasting methodologies will have to be
made to maintain forecasting accuracy. This paper investigates
an ensemble-based technique called Bayesian Model Averaging
(BMA) to improve the performance of Net Interchange Schedule
(NIS) forecasts. BMA is used to combine an ensemble of five
diverse forecasting methods that each estimate NIS. The results,
which examine performance for two separate years of real-world
NIS data, demonstrate that BMA’s aggregated forecasts reduces
forecasting error by 30-55% in comparison to all individual pre-
diction methods. This work illustrates a new possible mechanism
for improving NIS forecasting accuracy, as well as other power
grid system variables, and lays the foundation for future work
on aggregate models that can balance computational cost with
prediction accuracy.

Index Terms—Bayesian model averaging, forecasting, inter-
change schedule, prediction, time series

I. INTRODUCTION

To improve the efficiency and reliability of power grid op-
erations, neighboring RTOs and ISOs often exchange electric
power. Net interchange schedule is the sum of the import and
export MW transactions between an ISO and its neighbors.
One primary task of the ISO is to make the actual net
interchange follow the NIS in real time so that the Area
Control Error (ACE) stays within an acceptable limit.

Because many efficient generators respond relatively slowly,
an ISO often runs security constrained economic dispatch
(SCED) to economically dispatch generation resources several
hours ahead of the current time. One major constraint of the
SCED is to achieve a desired NIS by matching generation and
load. If the future NIS can be precisely predicted, this look-
ahead approach minimizes the generation cost by dispatching
the most efficient generators. Therefore, effective forecasting
of the NIS can improve the operation efficiency of the ISO by
enabling SCED ahead of the current time. Note that in real
time operation, the predicted NIS may be different from its real
values. To make interchange follow the real NIS, the automatic
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generation control (AGC) adjust regulation generation reserves
to compensate for the mismatch between real and predicted
NIS. Larger prediction errors in NIS call for larger amount
of generation reserve and therefore incur the extra cost for
purchasing generation reserves.

Variable forecasting has been studied for a long time and
forecasting methods range from simple to very complex. NIS
forecasting can be categorized either as a time series or
a causal forecasting problem, depending on the forecasting
approach followed, as explained in greater detail in Section II.
Autoregressive (AR) or Autoregressive Integrated Moving
Average (ARIMA) methods are commonly used for time
series forecasting. They are relatively simple to implement,
but choosing the correct model order requires a lot of exper-
imentation. Under the category of causal forecasting, linear
regression, Classification And Regression Trees (CARTs),
Artificial Neural Networks (ANNs), Support Vector Machines
(SVMs), and others are commonly applied to derive a variable,
like NIS, forecast. Each of these methods has its advantages
and shortfalls. For example, linear regression is simple to
implement, but can only model linear correlations between
variables. Regression trees produce an easy to interpret model,
but are susceptible to over-fitting. ANNs can model non-
linearities, but they require a large number of parameter tuning
and they are non-intuitive. SVMs have really good modeling
capabilities, but require a large amount of data for training.

Recently ensemble-based algorithms have been researched
more extensively as a way to form aggregate forecasts. In
ensemble approaches, estimates from a collection of forecast-
ing methods are combined (e.g., through a weighted average)
to form a single aggregated forecast. The motivation behind
ensemble-based approaches is based on two principles: 1)
all methods in the ensemble possess some unique, useful
information; and, 2) no single method is sufficient to fully
account for all uncertainties. Proponents of ensemble-based
approaches assert that the best forecasting approach to use
for estimation is a combination of all of the methods. The
underlying premise behind this tenet is that the information
and strengths of individual methods can be combined, and
their corresponding weaknesses and biases can be overcome
by the strength of the group [1]–[4]. Ensemble-based estimates
are therefore expected to be more reliable and potentially more
accurate than individual methods, an expectation that has been
upheld in numerous examples [1], [2], [5]–[7].

This work leverages a ensemble approach called Bayesian
Model Aggregation (BMA) to predict NIS. This paper specifi-
cally uses BMA in this work because BMA-based predictions
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are highly accurate [2], [6], and are known to outperform
predictions obtained from other ensemble methods including
boosting and bagging [8], as well as a variety of regression
techniques. A simple study of the application of BMA for NIS
forecasting is described in [9]. As discussed in Section III,
BMA’s predictive benefits are based on its ability to address
uncertainties associated with model specification. These uncer-
tainties are arguably the source of error in predictive modeling
[2]–[4], [7], [10].

The remaining of the paper is organized as follows. Sec-
tion II provides an overview of application examples of
forecasting in the power systems domain area. In Section III,
the BMA model and the individual forecasting methods of the
ensemble are described. Also in Section III, the dataset used
for training and estimating of the forecasting algorithms is
described. In Section IV, we present a series of results demon-
strating the efficacy of applying BMA for NIS forecasting.
Finally, some conclusive comments and directions for future
work can be found in Section V.

II. APPLICATIONS OF VARIABLE FORECASTING

Variable forecasting is an integral part of many applications
found in diverse domain areas. From the traditional engi-
neering domains to finance, medical technology, and human
behavior analytics, the fundamental methodologies applied are
common and have been studied for over 40 years. In the field
of power systems engineering, forecasting has been used to
forecast load, power output, energy prices, and wind. The
accuracy of these forecasts influences the power grid operation
and reliability, thus numerous efforts have been made in
improving the forecasts.

Typically, variable forecasting is categorized either as time
series or as causal forecasting. Forecasting methods are classi-
fied as time series forecasting when previous time observations
of the dependent variable are used to predict the dependent
variable. On the other hand, in causal forecasting a set of
explanatory variables that have a causal relationship to the
dependent variable are used to predict the dependent variable.
Another way of classifying forecasting methods is based on
the time horizon used, which can be short, mid or long-
term. With reference the power engineering field, a short-term
horizon consists of one to a few hours, a mid-term horizon
consists of a day to a few days or weeks and a long-term
horizon consists of a few months or years’ worth of data.
Classic forecasting methodologies, like linear regression and
artificial neural networks, are still prevalent in many industrial
applications, while there is on-going research on refining and
improving the classic methods, on deriving new ones and on
combining multiple methods.

Load forecasting is probably the most studied forecasting
problem in the power systems domain area. Early literature
from the 90s mainly revolved around linear regression tech-
niques and some artificial neural networks. With the devel-
opment of new statistical and machine learning algorithms,
engineers started testing their applicability to load forecasting.
ANNs have been extensively tested and used, like for example
in [11], [12] in load forecasting for short [13] and mid-
term time horizons. In more recent years, other methods have

been used like SVMs [14], [15], abductive networks [16] and
semi-parametric additive models [17]. The methods described
above focus on causal modeling of the load in relation to
explanatory variables, like weather, that influence the load
variation. Other methods like AR and ARIMA derive load
forecasts by modeling the load as a time series [18]. As pointed
out in [13] load forecasting is difficult because it depends
on different levels of seasonality and on many explanatory
variables. This explains the different types for forecasting
models that need to be derived to capture special cases like
holidays and extreme weather conditions.

Another common area of interest where forecasting has an
important role is in renewable energy power output prediction.
The increasing penetration of renewable energy resources
in the power grid accentuates the importance of accurately
forecasting their power output. This is not a trivial task
because the power output from renewable resources is known
to have a high degree of volatility due to its dependence on
weather variables, like wind for wind power generation and
solar irradiation for photovoltaic (PV) power generation. The
statistical and machine learning methods described above are
used for forecasting wind power output [19], [20] and PV
power output [21].

Applying forecasting algorithms in the area of power
system markets is also widely applicable, particularly after
the electricity markets deregulation. ANNs have been used
for forecasting market clearing prices and also in a hybrid
models with ARIMA in [22] to forecast short-term electricity
prices. In the deregulated market the locational marginal prices
(LMPs) have a significant role in delivering market price
signals. [23] describes how the LMPs can be forecasted under
load uncertainty and [24] describes how congestion, which
is one of the main influencing factors of the LMPs, can be
forecasted.

III. FORECASTING MODEL

In this section, the mathematical formulation of the
Bayesian model aggregation ensemble approach is explained.
Additionally, the individual forecasting methods, whose out-
puts the ensemble approach aggregates, are briefly described.

A. Bayesian Model Aggregation

For NIS forecasts, a basic BMA approach is to consider a
set of forecasting methods as a linear system [2]–[4]. Let yi for
i = 1, . . . , N be a series of historical NIS observations, and let
xij denote the ith estimate obtained from the jth forecasting
method for these observations. Given P forecasting methods,
the combination of all xij forms the numerical ensemble
estimate matrix that, along with yi, defines a linear regression
model

yi =

P∑
j=1

xijβj + εi (1)

Here, the parameter vector βj defines the unknown re-
lationship between the ensemble’s P constituents and εi is
the disturbance term that captures all factors (e.g., noise and
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measurement error) that influence the dependent variable yi
other than the regressors xij .

In evaluating ( 1), the objective is to estimate the values
βj that will both fit the known NIS data in yi and facilitate
the ability to make inferences on future NIS. Many different
regression techniques can estimate βj [25], [26]; however,
these techniques commonly generate estimates that vary in
their ability to consistently forecast [2]–[4], [8]. The risk
and uncertainty associated with using one of these forecasts
over any other is called statistical model uncertainty. This
uncertainty is arguably one of the greatest sources of error
and bias for forecasting [2]–[4], [7], [10].

BMA addresses the challenge of statistical model uncer-
tainty by first evaluating all possible models that can be formed
from the P forecasting methods, and then combining each
model’s estimates for βj through a weighted average. This
aggregation process generates an aggregate-based parameter
vector, βBMA

j ( 2) that can provide more accurate and reliable
forecasts than any individual ensemble constituent, and can
also outperform other ensemble-based strategies (e.g., stepwise
regression) [2], [8].

Formally, there are k = 1, . . . , 2P −1 distinct combinations
of the P forecasting methods, each with a corresponding
statistical model, M (k), and parameter vector, β(k)

j . BMA
combines each β(k)

j , through a weighted average that weights
each β

(k)
j by the probability that its statistical model, M (k),

is the “true” model.

βBMA
j = E[βj |y ] =

2P−1∑
k=1

E[β
(k)
j |y,M

(k) ] Pr(M (k)|y)

(2)
In 2, E[β

(k)
j |y,M (k) ] is the expected value of the pos-

terior distribution of β(k)
j that is weighted by the posterior

probability Pr(M (k)|y) (i.e., the probability that M (k) is
the true statistical model given yi). The expected posterior
distribution of β(k)

j is approximated through the linear least
squares solution of the given model M (k) and NIS response
variable, y = [y1, . . . , yN ]. The posterior probability term is
estimated from information criteria [4]

Pr(M (k)|y) ∝ e−
1
2B

(k)∑2P−1
l=1 e−

1
2B

(l)
(3)

where B(k) is the Bayesian Information Criteria for model
M (k), and the information criteria itself is estimated [4]

B(k) ≈ N log (1−R2(k)) + p(k) logN (4)

Here R2(k) is the R2 correlation value for model M (k),
p(k) is the number of methods used by the model (not
including the intercept), and N is the number of NIS values
to be predicted. BMA’s aggregation thus weights each model’s
expected parameter vector b(k)j with the probability value that
is based on that model’s ability to balance trade-offs between
model complexity (i.e., the number of methods used) and
goodness of fit. Models that use a larger number of methods,
or that do not fit the observations well, are penalized and can

be eliminated from the final aggregation process (i.e., their
posterior probabilities are effectively 0). In this context, BMA
combines the best models to provide an accurate estimate for
the true parameter terms, βj .

The resulting parameter vector, βBMA
j , obtained from ( 2)

helps to address model uncertainty by accounting for all
systems of linear equations that can model the relationship
between the measured NIS values yi and values xij forecasted
by each method j. More importantly, βBMA

j can be used to
forecast NIS by combining new xij predictions.

B. Description of Data and the Forecasting Ensemble

We apply the BMA approach to an ensemble of prediction
methods that were trained to forecast NIS. We used a real-
world dataset from two different years to train and evaluate
the BMA approach and each of the forecasting methods. In
this context, our results are presented in Section IV as two
separate experiments: experiment one is based on data from
2012 (January through October), and experiment two is based
on data from 2013 (January to June). These experiments allow
to test the BMA model for winter, summer and spring season;
fall is very similar to spring with regards to energy demand
patterns and NIS.

The data contains the dependent variable, total NIS sub-
mitted to PJM by the neighboring pools, and independent
variables like load and shadow price in PJM, time and seasonal
variables. It is well known that Time of Day (ToD), Day of
Week (DoW) and season significantly affect power and energy
demand, and consequently NIS. This intuition is confirmed
in the plots of Section IV. The load and shadow price are
always positive, while NIS can be positive or negative when
a neighboring pool has respectively scheduled an import or
export of power from or to PJM. There is also a number
of derived variables used that are based on a trend analysis
of some of the variables, as described in [27]. Both original
and derived variables get time-aligned to form an input data
matrix that serves as input for most of the forecasting methods
described below.

The ensemble itself contains forecasting techniques from
a variety of statistical methods including Sparse Regression,
Support Vector Regression, Autoregression, Random Forests,
and Artificial Neural Networks. We summarize these tech-
niques below.

• Sparse Regression (SR) [28] The sparse regression im-
plementation with Figueiredos Normal-Jeffreys prior is
a Bayesian approach to sparse regression that uses a
hierarchical Normal-Jeffreys prior instead of the Lasso
L1 penalty. The advantage of the method is that it is
scale-invariant and adapts automatically to the level of
sparsity of the data without the need to tune parameters.
In this work, our sparse regression implementation takes
as input 12 hours of the input data matrix described above
to specify a model that forecasts one value of NIS.

• Support Vector Regression (SVR) [29] SVR methods
work by solving a constrained quadratic problem where
the convex objective function for minimization is defined
by a loss function and a regularization term that controls
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the complexity of the hypothesis space. As SVRs mini-
mize both training error and complexity, their forecasting
performance is often significantly better than techniques
that rely only on loss function minimization. In this work,
our SVR implementation takes as input 12 hours of the
input data matrix described above to specify a model that
forecasts one value of NIS.

• Autoregression (AR) [30] AR methods forecast future
values in a time series through a weighted average of
previously observed values. The number of historical
values used by the AR model indicates the model’s order.
Formally, AR(p) indicates that forecasts are based on a
linear combination of the previous p values in the series.
Solving for the weights in the linear combination is done
through maximum likelihood analysis. This work uses an
AR(12) model to forecast NIS.

• Random Forest (RF) [31] RFs extend general regression
techniques with a learning strategy. The strategy begins
by constructing an ensemble of regression trees during
training, and then uses these trees to forecast the next
value in the time series. The final RF forecast is based on
the mean forecast of all regression trees. RFs are similar
to BMA in that they combine an ensemble of forecasts
to form an aggregated forecast. However, while RFs
assign equal weights to each forecast in the ensemble,
the BMA approach weights each forecast based on the
posterior probability that the underlying statistical model
is the correct model ( 2). This weighting helps to better
account for statistical model uncertainty as models can be
weighted according to information criteria. This work’s
RF model takes as input 12 hours of the input data matrix
described above to specify a model that forecasts one
value of NIS.

• Artificial Neural Network (ANN) ANNs model the
relationship between a set of explanatory variables and
a response variable (e.g., NIS). While most regression
methods model such relationships through a linear com-
bination of the explanatory variables, ANNs model this
relationship through the use of arbitrary, nonlinear multi-
parametric discriminant functions. Resultantly, ANNs can
model more complex dependencies between y and X and
so many domains employ ANNs for forecasting for their
increased fidelity. The ANN used in this work is based
on 12 hours of the input data matrix described above to
specify a model that forecasts one value of NIS.

C. Training and Estimating with BMA

Each forecasting strategy discussed in Section III-B used
a sliding window approach for training and testing. In this
procedure, each method used 12 hours worth of data to forecast
NIS for the next hour. For example, methods whose training
set spans 9am to 8:59pm will forecast NIS for the interval that
starts at 9pm and ends at 9:59pm. Once forecasts are made,
the window slides ahead by a one hour interval. This process
is illustrated in Fig. 1.

Similarly, the BMA model was trained with a sliding
window strategy. To train BMA, we combined 12 hours of

Fig. 1: This figure illustrates the sliding time window strategy used
to train and then forecast NIS.

initial forecasts by the forecasting ensemble. The combination
of these forecasts form the numerical ensemble estimate matrix
,xi,j , in ( 1). We then solved for βBMA

j as discussed in
Section III-A. With this coefficient vector, we then combined
the next hour’s worth of forecasts made by the ensemble
to form an aggregate forecast for the next hour. After the
forecasts were made, the training window slides up by one
hour.

We used the root mean squared error (RMSE) to assess
the forecasting performance for each method. Thus we assess
method j’s forecasting accuracy

RMSEj =

√∑N
i=1(yi − xi,j)2

N
(5)

where yi for i = 1, . . . , N is the series NIS observations,
and xij is the estimate from method j for these observations.
For each hour, there are four NIS observations. Accordingly,
N = 4 and we compute RMSE for each hour for each model
to asses forecasting performance.

IV. RESULTS

We apply our aggregate forecasting approach to the NIS data
described in Section III-B. To assess forecasting performance
for the five ensemble constituents and BMA, we separate our
results into performance calculated based on RMSE for 2012
and performance calculated in 2013. For each year we examine
this error based on three attributes: 1) we report the overall
annual forecasting performance for the ensemble of methods,
as well as BMA’s aggregate forecast (Section IV-A); 2) we
analyze the mean forecasting error observed through out the
year based on the day of the week (Section IV-B); and finally,
3) we analyze the mean forecasting error observed through out
the year based on the time of day (Section IV-C).

A. Annual Forecasting Performance

One of the most important measures of the performance
of a forecasting algorithm is the overall accuracy and perfor-
mance improvement in comparison to other methodologies.
As mentioned in Section II, accurate forecasting is critical to
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TABLE I: Performance by Forecasting Method

Method class 2012 2013
BMA 378.5 280.8
ANN 707.9 517.0
AR 600.3 459.5
SR 872.7 648.1
RF 533.3 357.0
SVR 741.6 456.7

maintain reliable and efficient operation of a power grid. The
NIS overall forecasting accuracy using the suggested BMA
ensemble method is discussed, based on the results presented
in Fig. 2 and Table I.

Fig. 2 shows the cumulative RMSE of each forecasting
method in the ensemble, as well as BMA’s aggregated forecast.
This figure shows the results for NIS data between January and
November of 2012 (left) and data observed between January
and June of 2013 (right). The cumulative error in both plots
is generated by summing the RMSE computed for each hour
that NIS was observed.

In both years, the aggregated forecasts made by BMA sig-
nificantly outperform each individual method in the ensemble.
Table I summarizes the total benefits by listing the percent
reduction in error BMA provides over each forecasting method
for the complete data set. With respect to the forecasting
ensemble, the random forest (RF) method provides the next
best forecasting performance for both years. Note that the
performance trends for the next best performing methods
change between 2012 and 2013. More specifically, in 2012
the best performing forecasts after RF are AR, ANN, and
SVR where as in 2013 the best performing forecasts after RF
are SVR, AR, and ANN. In both years, sparse reduction (SR)
method provides the least accurate forecasts. Note that despite
the changing performance of the methods, the BMA-based
forecast that aggregates these methods provides consistently
better performance. Also note that the general performance of
forecasts is better in 2013 than 2012.

B. Performance Based on the Day of Week

The power grid operation is driven by consumer and in
general human behavior. As a result weekly effects on the
power demand and supply are expected, whether for residential
or industrial units. For example, during the working days
of a week, Monday to Friday for the USA, there is more
uncertainty on the power supply and demand cycle because
all industrial units are operational. During the weekend a lot
of the industrial units and office space units require much
less power, because they are not operational or just perform
basic maintenance functions. This phenomenon could be the
driving reason behind some of the trends observed from our
NIS forecasting analysis.

Fig. 3 shows the mean RMSE per day for the 2012 data set
(left) and 2013 data set (right). These numbers are determined
by calculating the mean NIS value for each day of the
week based on the total days in the given year’s data. The
performance trends for best forecasting methods parallel the
performance trends in Fig. 2: BMA provides the best forecast-
ing performance. Note also the forecasting performance for

all methods improves between 2012 and 2013. We observe
slight Day of Week effects as NIS forecasting error (RMSE)
increases during the middle of the week and then tapers off
during the weekend. These effects are based on forecasting
errors that increase due to the increase of the power supply
and demand uncertainty during the working week.

C. Performance Based on the Time of Day

The human behavior effect on the power demand and NIS
has another temporal component, the Time of Day. It is well
known that during certain times in the day the power demand
is higher than other times. There is usually a peak observed
between 6:00am to 9:00am and another between 16:00pm to
19:00pm. The peaks are driven by standard human working
schedules. When assessing the BMA forecasting accuracy, its
performance based on ToD was analyzed and the results are
summarized in Fig. 4.

Fig. 4 shows the mean RMSE per hour (for any given day
based on 24 hours) for the 2012 data set (left) and 2013
data set (right). These numbers are determined by calculating
the mean NIS value for each hour of the day based on the
total hours in the given year’s data. This figure illustrates
that BMA-based forecasts provide the best NIS forecasts for
any given hour. Note that forecasting trends in this figure are
even more pronounced than the time of day effects for error
shown in Fig. 3. More specifically, around 6:00am in both
2012 and 2013 data, forecasting errors rise sharply for all
forecasting methods. This effect is based on forecasting errors
that increase in magnitude as NIS becomes more uncertain
with higher variability during the start of the work day. Note
that there is also a similar spike in RMSE between 22:00pm
and 23:00pm. Also note that these effects appear to be damped
in 2013 in comparison to 2012.

The spikes in the forecasting error can be further reduced
by including a forecasting model in the ensemble capable of
capturing this periodic behavioral pattern more efficiently. This
is part of the future work for this research and is discussed in
Section V.

V. CONCLUSION

There are certain features of the power grid that are chang-
ing to accommodate for new technological developments, such
as incorporation of renewable energy resources and increase
in power and energy demand. The new features introduce
a higher degree of uncertainty that causes currently applied
forecasting methods to be challenged. There are efforts in
progress for testing new statistical and machine learning
methods to forecast power grid variables with the desired
accuracy ensuring robustness of the power grid system. NIS is
one of the important variables that influences the power grid
system operation. In this research we have concentrated on
applying an ensemble approach called BMA to forecast NIS.
Ensemble approaches are strong candidates for performing
forecasting and other statistical analysis because of their
unique capability of combining diverse individual statistical
methods and producing a single output that better models the
variable or system under examination.
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2012 2013

Fig. 2: This figure shows the cumulative forecasting error for two different years - 2012 (left) and 2013 (right) - based on root mean
square error (RMSE). In this figure we contrast BMA’s forecasting performance to the performance of methods in the forecasting ensemble.
Here BMA is shown to provide significantly more accurate NIS forecasts throughout the year in comparison to any of the other forecasting
methods.

2012 2013

Fig. 3: This figure shows forecasting errors for given days of the week based on two different sets of data: 2012 (left) and 2013 (right).
The error, which is based on root mean square error (RMSE), is calculated by taking the mean RMSE of the forecasts made for that day
throughout the given year. This figure demonstrates that BMA provides consistently better performance for any given day of the week in
comparison to the ensemble of forecasting methods.

The results of applying BMA for forecasting NIS are
very promising and lay the foundation for applying this
methodology on other power system variables. The results
presented in Fig. 2 to Fig. 4 demonstrate that BMA’s NIS
forecasting accuracy is significantly better than the accuracy
of each individual forecasting method. The performance of the
BMA on NIS forecasting has been tested with respect to the
entire dataset, the Time of Day and the Day of Week. In all
cases, BMA’s performance is superior to the performance of
individual models.

As future work, there are a few areas where there is still
room for improvement. First, the ToD analysis demonstrated
that there are still patterns on the NIS forecasting error that
could be removed by adding more forecasting models in the
ensemble capable of capturing the temporal periodicity of
human behavior and its effect on power demand and NIS.
These model will probably be temporarily adaptive. Second,

addition of more and more diverse forecasting models in
the ensemble will render the BMA forecast more robust and
accurate. We believe that the BMA superior performance in
comparison to other ensemble approaches will be obvious.
Finally, in this study the dependent variable to-be-forecasted
is the aggregated NIS from all PJM’s neighboring pools.
Forecasting NIS of the neighboring pools individually might
reveal more trends and information that gets averaged out
when aggregated into total NIS to PJM.
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