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 

Abstract—The variability and non-dispatchable 
nature of wind and solar energy production presents 
substantial challenges for maintaining system balance. 
Depending on the economical considerations, energy 
storage can be a viable solution to balance energy 
production against its consumption. This paper proposes 
to use discrete Fourier transform (DFT) to decompose 
the required balancing power into different time-varying 
periodic components, i.e., intra-week, intra-day, intra-
hour, and real-time. Each component can be used to 
quantify the maximum energy storage requirement for 
different types of energy storage. This maximum 
requirement is the physical limit that could be 
theoretically accommodated by a power system. The 
actual energy storage capacity can be further quantified 
within this limit by the cost-benefit analysis (future 
work). The proposed approach has been successfully 
used in a study conducted for the 2030 Western 
Electricity Coordinating Council (WECC) system model. 
Some results of this study are provided in this paper. 
 
Index Terms—Imbalance power, energy storage, 
integration of variable resources, discrete Fourier 
transform, WECC System. 

I.  INTRODUCTION 

igh penetrations of variable energy resources 
create significant uncertainty in required power 

generation, needed to balance the energy production 
against the consumption [1-2]. New technologies, such 
as new wind and solar forecasting tools, demand-side 
control, fast start-up units, and many others have been 
proposed to address this balancing issue [1]. Among 
those options, energy storage can be a viable solution 
because of its fast response and control flexibility [3-
4].  

A.  Energy Storage as an Ancillary Service Resource 

Today, many electricity storage technologies, 
including pumped hydro, various batteries,  
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compressed air,  flywheels, capacitors, and others are 
proposed or already used to control the grid [3-6]. 
Energy storage (ES) systems can be used to follow the 
net load changes, stabilize voltage and frequency, 
manage peak loads, improve power quality, and 
ultimately support renewable integration. A summary 
of performance requirements needed for a variety of 
energy storage applications can be found in [6].  

Wind and solar power variations are hard to predict 
and cause multiple impacts including the impact on 
system reliability. To maintain balance between 
generation and load, costly flexible generation 
resources that have sufficient start up time, ramping 
speed, and capacity may be employed. 

Alternatively, energy storage for periods from days 
to less than 1 hour can help to smooth out unpredicted 
power fluctuations. For the intra-hour variations, 
energy storage can provide essential ancillary services 
such as fast regulation and load following. This would 
have great advantages because fast regulation may be 
twice as effective as gas turbines and 20 times more 
effective than steam turbines [7]. Therefore, the short-
term ES represents a new perspective class of ancillary 
service resource. 

The 2007 FERC1 Order No. 890 allows so-called 
“non-generation” resources like energy storage to 
participate in regulation markets on a non-
discriminatory basis. Since then, new market rules 
have been developed by some Independent System 
Operators (ISOs). For example, the New York ISO 
already started to support the integration of limited 
energy storage resources (LESR) [8].  

The balancing ancillary services represent an 
attractive business opportunity for ES. Numerous 
research and demonstration projects in this area have 
been planned or currently under development. For 
example, Beacon Power Corporation is constructing 
the grid-scale 20 MW flywheel plant in Stephentown, 
New York, in an attempt to provide approximately 
10% of New York's overall frequency regulation 
needs. AES has tested an Altairnano lithium-titanate 
battery (2MW/500kWh) in a pilot program with 
California ISO. Furthermore, the Department of 
Energy’s American Recovery and Reinvestment Act 
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(ARRA) stimulus funding is sponsoring 37 projects 
with a combined value of 637 million dollars, which 
combine smart grid and energy storage functionality 
[9]. This will greatly accelerate the entrance of ES into 
the power grid, in particular, the module, distributed 
ES (e.g. community energy storage, plug-in hybrid 
electric vehicles). If modeled and controlled properly, 
these aggregated small-size ESs can provide the 
ancillary services cost-effectively. In view of these, it 
can be envisioned that ES will become more integral 
to the grid operation, and play a key role in providing 
ancillary service to enable a high penetration of wind 
power and other renewable resources [9].  

B.  Sizing of Energy Storage 

Among other characteristics, an energy storage can 
be characterized by its energy capacity (MWh), power 
capacity (MW), round-trip efficiency, and ramping 
capability. The capital cost of energy storage consists 
of an energy component ($/MWh) and a power 
component ($/MW). The former represents the cost of 
the storage medium, and the latter represents the cost 
associated with the power electronics. The current cost 
for energy storage is still relatively high. However, as 
mentioned above, several companies are exploring the 
competitiveness of their novel storage technologies in 
very specific high-value markets. These markets 
usually require short duration energy storage, which 
power output can be sustained at the rated power 
capacity level from 15 to 20 minutes. Longer duration 
energy storage (for over several hours or for a day) are 
generally pumped hydro or compressed air energy 
storage technologies, which generally are less flexible 
in their placement compared to battery or flywheel 
energy storage. Both from a transmission planning and 
technology development points of view it is of interest 
to estimate the total market size for different energy 
storage systems.  

In this context, the optimal operation and sizing of 
ES is a subject of intensive research work. Stochastic 
optimization has been proposed to find the optimal 
sizing of energy storage so as to maximize the 
expected operation profit (or minimize the cost) while 
taking into account transmission constraints [10-15]. 
In [16], battery energy storage (BES) is used in 
conjunction with a wind farm. The capacity of BES is 
determined to ensure constant dispatched power to the 
grid while the voltage level across the dc-link of the 
buffer is kept within preset limits.  Some authors used 
probabilistic methods to model the operation of energy 
storage [6]. They evaluated two potential control 
strategies, i.e., the energy is released as soon as the 

local network can absorb it, or the energy is stored and 
is sold when the price of electricity is higher. The 
value of storage in relation to power rating and energy 
capacity was investigated so as to facilitate appropriate 
sizing. The BES storage device can be used to 
reinforce the dc bus during transients, thereby 
enhancing its low-voltage ride through capability. 
When properly sized, it can effectively damp short-
term power oscillations, and provide superior transient 
performance over a number of seconds [17]. Using a 
BES unit to provide frequency regulation was 
discussed in [11]. 

State-of-the-art ES models that would be 
appropriate for transmission and distribution uses were 
reviewed in [9]. They can be used for optimizing 
storage size for ancillary services. 

C.  Need for Sizing Tools for Power Systems Planners 

This paper presents a novel perspective on the 
sizing issue of grid-scale ES for utilities which are 
concerned with the system flexibility characteristics 
needed to mitigate the volatility of wind and solar 
power. Essentially, the maximum size of ES can be 
decided upon the cycling components of the required 
balancing power. Previous research work conducted at 
the Pacific Northwest National Laboratory (PNNL) 
studied the capacity requirement of energy storage in 
WECC for year 2030 2  [18]. The follow-up work 
reported in this paper aims at determining the 
maximum feasible size of energy storage by 
identifying different cycling components of the 
balancing power. This proposed approach does not  
use either production cost models or comprehensive 
storage models. It is based on the fact that an energy 
storage cycles energy within certain frequency range. 
For example, a flywheel can cycle energy 4 cycles per 
hour or even faster if the full energy capacity is used. 
To find the maximum cycling requirements at different 
frequencies, a frequency decomposition of the 
balancing power signal is used in the paper. The 
components of this decomposition are periodic signals 
with zero total energy, representing the cycling job for 
the energy storage. These periodic components also 
indicate the duration requirements for storage 
technologies.  Ultimately an optimal allocation of 
storage technologies can be determined based on this 
cycling analysis.  

This paper is organized as follows. Section II 
discusses the basic methodology to decompose the 

                                                            
2  Internal PNNL study that estimated the technical potential of the 
energy storage for meeting new balancing requirements in the 
WECC for a 88 GW wind power scenario. 
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balancing power using discrete Fourier transform 
(DFT). Section III presents the simulation results for 
the 2030 WECC system model. Section IV provides 
the final discussion and conclusions. 

 
II.  DECOMPOSITION OF BALANCING POWER USING 

DFT 

    The balancing process consists of several 
components, including scheduling, load following, and 
regulation. While the scheduling component usually 
reflect hourly dispatches of generation units providing 
most of the energy to the load, the load following and 
regulation components help to achieve intra-hour 
balance by covering the gap between the hourly 
schedules and minute-by-minute system load.  

A.  Balancing Power  

The power system control objective is to minimize 
area control error (ACE) to the extent sufficient to 
comply with the North American Electric Reliability 
Corporation (NERC) Control Performance Standards 
(CPS). Therefore, regulation and load following 
signals are signals that oppose deviations of ACE from 
zero: 

 ( ) 10 ( )a s a sACE I I B F F                           (1) 

where subscript a denotes actual, s denotes schedule, I 
stands for interchange between control areas, F stands 
for system frequency, and B is the system frequency 
bias (MW/0.1 Hz, a negative value).  

The generation output consists of two components: 
 a s devG G G 

                                     
(2) 

where subscript s refers to hour-ahead schedule3, and 
dev refers to the deviation from the schedule. 

Similarly, the load can be separated into two 
components as follows: 

_a f ha devL L L                             (3) 

where Lf_ha is hour-ahead load forecast. 
Based on the assumption that 

   _s f haG L
                                 

(4) 

the difference between the actual load, La, and the 
forecasted load, Lf_ha, represents the load deviation that 
is compensated by generators (or energy storage) 
procured for load following and regulation processes. 

                  _dev a f ha a sL L L L G                   (5) 

Wind and solar generation can be treated as negative 
load. 

_
w w w
a f ha devG G G                  (6) 

                                                            
3  Please note that the hour-ahead schedule can be implemented 
differently in the different markets. 

where w
aG  is the actual wind power, _

w
f haG is hour-

ahead wind power forecast, and w
devG is the deviation 

from the forecast. 
Therefore, similarly to the situation without wind, 

the balancing power can be expressed as follows: 

                   _ _
w

s f ha f haG L G   (7) 

_ _( ) ( )w s w w
dev a a a f ha a f haL L G G L L G G           (8) 

Fig. 1 shows the imbalance power in the WECC 
model for August 2030. The balancing power needed 
in the system is opposite to the imbalance. It is 
assumed that the peak load in 2030 will have grown to 
205 GW, and the installed wind capacity will be 88 
GW (up from about 7 GW in 2008 [18]). The highly 
fluctuating imbalance signal is attributable to the high 
variability of wind power. It also represents the gap 
between the scheduled generation and actual load. By 
utilizing energy storage, the imbalance can be reduced 
by charging the energy storage whenever there is over-
generation (imbalance signal is above zero) and 
discharging the storage during periods of under-
generation (imbalance signal is negative). Periodic 
zero total energy components of the imbalance signal 
in Fig. 1 correspond to the maximum 
charging/discharging job that can be allocated to the 
energy storage. 
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Fig. 1. Imbalance power imposed by load and wind variability for 

assumed 88 GW of installed wind capacity (WECC model for Aug. 
2030). 

 

B.  DFT Analysis  

Different energy storage technologies are best suited 
for operation over different time periods. The 
imbalance power, shown in Fig. 1, can be broken 
down into the components spanning different 
frequency ranges. This decomposition can be achieved 
by using DFT. Each component of the periodic signal, 
except for the zero frequency component, represents 
cycling energy that averages to zero over each cycle. 

Generally, in a discrete form, the DFT analysis and 
synthesis equations are written as follows [19]: 



 4 

Analysis equation (fast Fourier transform)  
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Synthesis equation (inverse Fourier transform) 
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where N is the number of the data points in the 
sequence  (x[0], x[1],  , x[N-1]), and  

 2j N tftf
NW e 

.
 

The basic approach to decompose the imbalance 
signal using DFT consists of five steps, as shown in 
Table 1. 

Four different frequency ranges are selected, and the 
signal is decomposed into four categories: slow 
cycling, intra-day, intra-hour and real-time 
components. The band-pass filter applied to the 
spectrum is a rectangular window with unit magnitude 
within the band and zero magnitude outside of the 
band, as illustrated in Fig. 2 and Table 2. It is 
symmetric around one half of the sampling frequency. 

 
Table 1: Procedures of applying DFT for cycling analysis 

Steps Description 
1 Assume that the data sampling x(t) is 

sampled each minute (or 0.0167 Hz). The 
data window selected for DFT analysis is 2 
days (2880 samples), which starts at 0:00 and 
ends at 48:00.  

2 The data points are increased to 5760 sample 
with zero padding. 

3 The spectrum, X(f), is obtained by DFT. A 
band-pass filter (see Fig. 2) is applied to the 
spectrum, X(f). 

4 The filtered spectrum is converted back to 
the time-domain signal, x´(t), by using 
inverse DFT. 

5 The time-domain signal x´(t) is characterized 
by the magnitude and periodicity. 
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Fig. 2. Band-pass applied to the signal spectrum (the cutoff 

frequencies are fl and fu, and the filter is symmetrical about the half of 
the sampling frequency, fs /2) 

 
Table 2: Specifications of frequency bands of the balancing signal 

components 
Component fl (Hz) fu(Hz) 

Slow cycling 0 2.315e-5 

Intra-day 2.315e-5 9.259e-5 
Intra-hour 9.259e-5 0.00333 
Real-time 0.00333 0.00833 

 
The frequency ranges given in Table 2 have no a 

strict definition and they are loosely connected to the 
dispatch intervals.  The reason is that a dispatch 
interval can contain half cycle, the entire cycle, two 
cycles, and so on depending on researchers’ judgment. 
Currently they are set for periods of 3-12 hours (intra-
day), 5 minutes –3 hours (intra-hour), and 2–5 minutes 
(real time). 

C.  Simulation Results 

The DFT method described in Section II was 
applied to a simulated WECC system imbalance power 
model reflecting a future high wind penetration 
scenario for 2030. Several simplifying assumptions 
were made to determine the balancing requirements 
curve. The balancing requirement was derived from 
the uncertainty in the load and wind forecasting. The 
scenario assumed 88 GW of wind capacity in the 
WECC system. Furthermore, it was assumed a 
consolidation of all WECC balancing areas into one 
single balancing area. This model was derived in a 
previous PNNL project analyzing the energy storage 
potential applications in the WECC system [18]. 

D.  Decomposition of Balancing Power for a 
Particular Day 

  Fig. 3 shows the one-day imbalance power signal 
(top) and the corresponding spectrum (bottom). Most 
of the energy is concentrated in the low and middle 
frequency bands.  
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Fig. 3. Imbalance power for a day in August 2030  

 
By applying the filters shown in Fig. 2 and Table 2, 

in Fig. 4 the imbalance power, x(t), is decomposed into 
four components, namely, into slow cycling, intra-day, 
intra-hour, and real time components, x1(t), x2(t), x3(t) 
and x4(t). By summation of these components, we can 
reconstruct the original time-domain signal. The 
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reconstructed imbalance power matches well with the 
original signal, as shown in Fig. 5.  

The frequency and magnitude of the decomposed 
signal play an important role in determining the 
required energy storage characteristics as well as 
technologies appropriate for each application. 
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Fig. 4. Decomposition of imbalance signal for a day in August 2030  
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Fig. 5. Comparison between original signal and reconstructed signal.  

 

The frequency of cycling increases for intra-hour 
and real time components. This means that the energy 
capacity requirements are decreasing, while the 
cycling requirements are increasing.  The cycling 
requirement has implication for the life time of the 
energy storage. 

The energy storage power capacity requirement is 
associated with the magnitude of the cycles. On this 
particular day, the imbalance power swings between 
10.7 GW and -4.1 GW, while intra-hour component 
swings between 6.1 GW and -4.8 GW, and real-time 
component swings between 154 MW and -153 MW4. 
Therefore, the intra-day balancing process requires 
more ES power capacity than the intra-hour process by 
43. The same fact has also been observed for other 
days as described below. 

E.  Sizing of Energy Storage 

To determine the size of energy storage for slow-
cycling, intra-day, and intra-hour balancing processes, 
the method described in Section II was applied. We 
assumed a depth of discharge for the ES of 80%. Table 
3 shows both the power and energy capacities for the 
energy storage. 

In the full balance scenario (second column), the 
energy storage compensates for all the imbalance 
power. In the partial balance scenario (third column), 
the energy storage compensates for only intra-hour and 
real-time components. In the fourth column, the 
reduction in ES requirements between the full balance 
and partial balance is shown. 

 

                                                            
4 Despite the asymmetric power capacity requirement, the energy 
requirement remains symmetric (the positive and negative energy 
are equal), which is important for the energy storage applications. 
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Table 3: Comparison of the full balance and partial balance 
scenarios 

Energy 
storage 

size 

Full  
balance 

Partial  
balance 

Reduction in 
ES 

requirements 
Power 13.4 GW 7.7 GW 42.6% 
Energy 68.1 GWh 4.3 GWh 93.6% 

 
A very significant ES energy capacity (68.1 GWh) 

would be required in the full balance scenario. The 
state of charge of ES in this scenario is shown in Fig. 
6. The size of the energy storage can be reduced to 3.8 
GWh for the intra-hour component and to 568 MWh 
for the real-time component as shown in Fig. 7. 
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Fig. 6. State of charge profile for energy storage in Aug 2030 

(storage size=68.05 GWh) 
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(a) Intra-hour component (storage size=3.8 GWh) 
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(b) Real-time component (storage size=568 MWh) 

Fig. 7. State of charge profile for intra-hour and real-time 
components in August 2030  

III.  CONCLUSIONS 

This paper presents a novel methodology of 
characterizing maximum energy storage requirements 
for a balancing area or their interconnection. The 
approach is particularly useful for the system planning 
community as well as for the energy storage providers. 

The introduction of a cycling taxonomy (slow-cycle, 
intra-day, intra-hour, intra-minute and real-time) offers 
a new way to characterize the key features of energy 
storage technologies needed in the system. 
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