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Abstract 

Physical networks such as electric power grids that have both structure and dynamics generate 
huge volumes of data as the amount of instrumentation and the number of intelligent edge 
devices capable of generating both data and event messages increases, to the point where 
managing the data and extracting information from it become “big data” problems.  Dealing with 
the big data problem for such systems requires an understanding of the data classes produced 
by such systems, as well as the methods that apply to managing the data. 

As a part of big data management, the issue of extracting useful information also arises. With 
data volumes being simultaneously far too large and too complex for human comprehension, it 
is necessary to make use of tools that extract essential information. Further, much of the 
information contained in the data must be used in fully automatic systems, such as closed loop 
controls and other machine-to-machine applications. The analytics that perform such 
information extract can, with proper definition and design, be used in a distributed fashion to not 
only extract the needed information, but also aid in the management of the massive data flows 
generated in the physical system and its ICT overlay. 

This paper describes the data classes arising from the sensing, measurement, and event 
message streams generated by system devices in large scale systems. It provides a definition 
of analytics that clarifies how they may be applied to large scale systems and introduces 
architectural patterns for distributed and hierarchical implementations of analytics for both 
information extraction, and large scale data management.



Data and Analytics in Ultra-large Scale Systems 

Ultra-Large Scale Systems (ULS) such as smart grids and other large scale control systems 
lead to Big Data problems when the underlying physical systems are densely instrumented.  We 
must understand the nature of the data involved as well as the analytics that are used to extract 
actionable information from the data in order to develop proper intelligent network solutions. It is 
not sufficient to treat data as a transport problem, rather it is necessary to have a deeper 
understanding of data classes and uses than has been typical for developing products and 
solutions for the Service Provider industry.  This is due to a fundamental difference between, 
say, the Service Provider industry and industries such as electric power:  the primary business 
process of a Service Provider is data transport and the key discipline is networking; for other 
industries involving large scale data acquisition and control, data transport is one of many key 
disciplines and while data transport is important, it is not the primary business process. 

Providing scalability for Ultra-Large Scale Systems involves a number of criteria, the most 
obvious being the avoidance of communications bottlenecks. However, the scalability issue is 
not simply one of communication bottlenecking – it is also (and perhaps more importantly) an 
issue of data management, and a matter of processing capacity. Systems that use a central 
SCADA system or a central data repository for data collection become latency-bound as system 
sizes increase. This is not an issue for some applications, but for others it is detrimental or even 
fatal. 

Analytics are routinely used to expose information buried in large volumes of complex data.  
However, they may also be used to decrease data volumes while preserving information.  Thus 
they can play a dual role: information extraction and data scale management. Consequently, we 
consider ULS data and analytics issues jointly. We include visualization along with analytics, 
since under some models visualization is a form of analytic designed for the eye and mind. 

Data Classes and Characteristics 

This section focuses on data coming from grid devices and systems, or data associated with the 
grid (meta-data). Utilities have many other data sources and consequent databases and other 
data elements, but the rollout of smart grid devices has the most impact on change in the utility 
and is the focus of much of the networking that utilities must install or upgrade. 

Data arising from smart grid devices and systems may be grouped into five classes. Each has 
its own key characteristics; an understanding of these classes is important in the development 
of networking solutions for electric utilities. Table 1 below describes these five key data classes. 



 

Table 1 Grid Data Classes 

Data Class Description Key Characteristics 

Telemetry Measurements made 
repetitively on power grid 
variables and equipment 
operating parameters; some 
of this data is used by 
SCADA systems 

Constant volume flow rates 
when the data collection 
technique is polling; standard 
SCADA polling cycles are 
about 4 seconds, but the trend 
is to go faster; telemetry can 
involve a very large number of 
sensing points. Telemetry 
data usually comes in small 
packets. 

Oscillography Sample data from voltage 
and current waveforms; 

Typically available in bursts or 
as files stored in the grid 
device, captured due to a 
triggering event; transferred 
on demand for use in various 
kinds of analyses; for some 
kind of sensing systems 
waveform data is acquired 
continuously and is consumed 
at or near the sensing point to 
generate characterization 
values that may be used 
locally or reported out (e.g. 
converting waveform samples 
to RMS voltage or current 
values periodically); waveform 
sampling may be at very  high 
rates from some devices such 
as power quality monitors 

Usage data Typically meter data, 
although metering can occur 
in many forms beside 
residential usage meters; 
typically captured by time-
integrating demand 
measurements combined 
with voltage to calculate real 

May be acquired on time 
periods ranging from seconds 
to 30 days or more; residential 
metering may store data taken 
as often as 15 minutes, to be 
reported out of the meter one 
to three times per day 



power 

Asynchronous event messages May be generated by any 
grid device that has 
embedded processing 
capability; typically generate 
event messages in response 
to some physical event; this 
category also includes 
commands generated by 
grid control systems and 
communicated to grid 
devices 

For this class, burst behavior 
is a key factor, depending on 
the nature of the devices, the 
communication network may 
be required to handle peak 
bursts that are up to three 
orders of magnitude larger 
than base rates for the same 
devices; also, since many grid 
devices will typically react to 
the same physical event, 
bursting can easily become 
flooding as well 

Meta-data Data that is necessary to 
interpret other grid data or to 
manage grid devices and 
systems or grid data 

Meta-data includes power grid 
connectivity, network and 
device management data, 
point lists, sensor calibration 
data, and a rather wide variety 
of special information, 
including element names, 
which may have high 
multiplicity 

 

Power grid devices and sensors operate in one or more of five data output modes: 

• Polling – a master queries the device, which response with the most recent values of the 
specified data points. Such data usually comes in small packets, has high priority for 
traffic purposes, and is sampled on a regular and frequent basis. 

• Report by exception – the device pushes a data value to the master when the data 
changes by a specified amount. Some telemetry is collected this way, but many utilities 
prefer not to use this mode.  

• Streaming – sensor sends a continuous stream of data, once streaming is initiated, until 
streaming is terminated by command or abnormal exit condition 

• Interrogation of stored files – the device maintains a log or data file; upon query, it 
transmits the log or file to the master; example is a PQDIF or COMTRADE file from a 
C&I meter, power quality monitor, digital fault recorder, or remote video system DVR. 
The difference between this and polling as described above is that stored files are much 



larger than typical telemetry packets, are low priority for traffic purposes, and are 
requested infrequently and at essentially random intervals. 

• Asynchronous event message – the grid device or system uses internal processing to 
detect a specific condition indicated by the data and spontaneously sends an event 
message to the master or any subscribing system- the message may or may not contain 
actual sensor data relevant to the event; the internal triggering event can be a clock 
signal or countdown so that the messages are sent on a regular basis, but initiated by 
the edge device, not a central controller, or it may be some logical condition based on 
actual data; report by exception could be considered as a special case of this but is 
usually treated separately from event messages. When data transfer push is initiated on 
a regular timer basis, it has characteristics similar to polled data except the point of 
control is distributed to the data sources, whereas in normal polled telemetry, the point of 
control is central and is orchestrated by the receiving system. In the asynchronous 
mode, each data source sends without any orchestration, unless the source nodes 
coordinate with each other. In some AMI systems, the meter report usage data this way, 
generally with some randomization of reporting intervals in an attempt to reduce data 
channel overload. 

Polling is common in SCADA systems, but report by exception is used in some systems to 
reduce data volumes and therefore communication line bandwidth. Not all utilities are willing to 
use report by exception.  Streaming is common for advanced sensors such as PMU-based wide 
area measurement systems (WAMS).  Interrogation of stored data files is common for meters 
and for data loggers and grid devices that collect records (oscillography) on a triggered basis. 
Asynchronous event messages are becoming more common in devices that contain significant 
local processing and are therefore able to detect and declare events. Older smart meter system 
used polling to perform mass meter reads, but in newer designs the meters push the data to the 
head end at times selected by the meters. 

Latency Hierarchy and Lifespan Classes 

Data is consumed in a variety of ways and places in a power grid; most of these are not located 
at the enterprise data center and much grid data does not enter the data center. Some of it does 
not even enter the control/operations center, as it must be consumed “on the fly” in grid devices 
and systems. Consequently it is important to classify data according to the latency requirements 
of the devices, systems, or applications that use it and appropriate persistence (or actually, lack 
of such) must also be defined. Keep in mind that much grid data has multiple uses; in fact, it is 
an element of synergy that has significant impact on smart grid economics and system design 
(networking, data architecture, analytics) to ensure that data is used to support as many 
outcomes as possible. Figure 1 below illustrates the issue of latency. Latency hierarchy is a key 
concept in the design of both data management and analytics applications for physical networks 
with control systems or other real time applications. 



Figure 1 Latency Hierarchy for Grid Data 

What the chart does not illustrate is that a given data element may in fact have multiple latency 
requirements, depending on the various ways it may be used, meaning that any particular 
datum may have multiple destinations. 

The latency hierarchy issue is directly connected to the issue of lifespan classes, meaning that 
depending on how the data is to be used, there are various classes of storage that may have to 
be applied. This typically results in hierarchical data storage architecture, with different types of 
storage being applied at different points in the grid that correspond to the data sources and 
sinks, coupled with latency requirements. Table 2 below lists some types of data lifespan 
classes that are relevant to smart grid devices and systems. 



Table 2 Grid Data Lifespan Classes 

Data Lifespan Class Characteristics 

Transit Data exists for only the time necessary to travel from source to sink 
and be used; it persists only momentarily in the network and the data 
sink and is then discarded; an examples are an event message used 
by protection relays, and sensor data used in closed loop controls; 
persistence time may be microseconds 

Burst/Flow Data that is produced in bursts or is processed in bursts may exist 
temporarily in FIFO queues or circular buffers until it is consumed or 
overwritten; examples include telemetry data and asynchronous event 
messages (assuming they are not logged) – often the storage for these 
data are incorporated directly into applications, e.g. CEP engine event 
buffers 

Operational  Data that may be used from moment to moment but is continually 
updated with refreshed values so that old values are overwritten since 
only present (fresh) values are needed; example: grid (power) state 
data such as SCADA data that may be updated every few seconds 

Transactional Data that exists for an extended but not indefinite time; typically used 
in transaction processing and business intelligence applications; 
storage may be in databases incorporated into applications or in data 
warehouses, datamarts or business data repositories 

Archival  Data that must be saved for very long (even indefinite) time periods; 
includes meter usage data (e.g. seven years), PMU data at ISO/RTO’s 
(several years); log files. Note that some data may be retained in 
multiple copies; for example, ISO’s must retain PMU data in 
quadruplicate. 

 

Just as with latency hierarchy, grid data may progress through various lifetime classes as it is 
used in different ways. This implies that some data will migrate from one type of data storage to 
another as its lifetime class changes, based on how it is used. 

Prioritization of Grid Data Access 

At the operational level, there is a definite hierarchy of data access priority. These are naturally 
based on functional use of the data. In order from highest priority to lowest, at the power system 
control and field levels, they are: 

1. Protection 
2. Transmission Control 



3. Alarms and Device Event Messages 
4. WAMS Data 
5. Distribution Control 
6. Security Data (IM, RBAC, etc) 
7. Secondary Load Monitoring (i.e. demand response data) 
8. Telemetry (i.e. remote asset monitoring) 
9. Usage Data (metering) 
10. Voice/video/data for field force 

Specific exceptions to this prioritization can exist on a case by case basis, so that the actual 
prioritization must be determined for the data traffic on any specific utility network.  

Primary Data Framework Components 

Many types of storage and database technologies are useful in the smart grid context.  Table 3 
below summarizes principal types. Some types are specialized for specific purposes or 
applications; others like standard SQL databases are used in more general applications.  

Table 3 Storage Types 

Store Type Comments 

Operational Data Stores Used to hold state data which is continually refreshed, such as 
power and device state data, real time grid topology 

Time Series Stores Used to hold telemetry that will be processed in various ways over 
various time scales, but specifically including very long times 

FIFO Queues and 
Circular Buffers 

Very short term storage for data being consumed quickly by 
applications; often implemented in the application itself as memory 
resident small volume buffers 

Meter Usage Data 
Repositories 

Large scale repositories for meter data; these often hold the data of 
record for billing; generally associated with meter data management 
systems, although some independent MUDR’s have been 
implemented 

Relational Databases Widely used in a variety of operational and enterprise contexts; built 
using either standard relational database technologies or memory-
resident versions for faster response, especially in business 
intelligence and decision support applications. Utilities may have 
many such databases that have grown organically over many years 
of operation. 

Warehouses and 
Datamarts 

Used for storage of very large data sets for business intelligence, 
data mining, and the like; generally relational, but newer approaches 
are emerging  



True Distributed 
Databases 

Databases in which various data elements exist in non-duplicated 
form on various physical stores, non-duplication being key to 
scalability; useful for operational data/grid state in distributed 
intelligence environments 

Waveform Repositories Used to hold waveform files (oscillography); the waveform files may 
be treated as BLOB’s; repositories can be special purpose or a 
general content management tool 

GIS as a Data Store Geographic Information Systems are often the system of record for 
as-built physical network topology (occasionally it may be the 
Outage Management System that performs this function for 
Distribution); some smart grid applications need access to the as-
built topology meta-data, so it can be necessary to use the GIS as a 
database, although most are not built for real time or near real time 
query support. Consequently, as-built topology may be staged to a 
datamart for near real time access, with periodic updates form the 
GIS to the datamart. 

Federated Databases This is not a database type so much as a middleware for databases; 
federation can tie together heterogeneous databases so that 
querying systems do not need the details of the multiple underlying 
databases; this technology, along with CIM-structured relational 
databases has been used to integrate multiple operational, 
transactional, and time-series databases in smart grid data 
management solutions 

No-SQL/No-ReL 
databases 

Developing in response to “big data” requirements, these databases 
avoid the use of relational structure (hence the names “No-SQL” and 
“NoRel”), these databases are intended to scale to petabytes and 
beyond. These are beginning to see some use for business 
intelligence applications but have not penetrated utilities much as of 
this writing (Nov 2011). 

Content Manager 
Stores 

Databases designed specifically for content management, so that 
files of various kinds can be stored, access-controlled, version-
controlled, etc. Useful for BLOB-like objects, hence the mention 
above for waveform repositories, but also useful for engineering 
drawings, video, manuals, and grid device settings/configurations 

 

For more specifics on data for power systems, see the white paper “Extended Grid State and 
Sensing Strategy for Smart Grids v 6” (Extended Grid State and Observability v6.doc). 
 



Analytics and Visualization 

Data analytics are tools (normally software) that extract essential information from masses of 
data. The term is quite general, and so refers to many different type of data processing. We 
include visualization along with analytics because in most cases we need to present the results 
of the analytic processing in ways that are easily comprehended. In fact, in some models, 
visualizations are considered to be analytics specifically crafted for the eye and brain. Generally, 
analytics are used to provide input to decision and control processes. 

We subscribe to a flexible definition of analytics that does not depend on specific software tools 
or processing techniques such as data mining or Business Intelligence. In our definition, an 
analytic is a data processing algorithm implementation that decreases Shannon entropy. This 
definition allows us to view low level signal processing operations such as noise filtering as 
analytics, in that they reduce uncertainty in the information content of a data record or stream 
(for streams, we may use entropy rate). This definition also makes it clear that exactly reversible 
transformations such as Fast Fourier Transform (FFT) or symmetric components are in fact not 
analytics by themselves. Such a result agrees with intuition (the time domain and frequency 
domain representations of a signal are exactly equivalent, as are unbalanced phasors and their 
symmetric components) and clears up a common misstatement about FFT being an analytic. 
Such transformations are often very useful for making the information extraction process easier 
to accomplish and therefore will often be incorporated into analytics as preprocessing steps.  

The definition also provides a view of a chain of analytical data processing steps as creating an 
entropy pyramid: as we move up the processing chain, entropy should decrease at each stage. 
If we consider the analytic as an information channel, then we may apply the concept of 
transinformation to the analytic, and we then recognize that an analytic may be able to reduce 
entropy, thereby permitting a reduction in data volume or data rate. Consequently, analytics can 
serve not only to extract useful information from data, but they can also be used as data volume 
reduction tools, especially when applied in a hierarchy or processing pipeline Basically, if a raw 
data record has a given entropy per bit, and if the analytic is information-lossless, then the 
output can be represented with fewer bits than the input so that we can keep entropy per bit 
roughly constant as we progress through the analytic chain and up the entropy pyramid. 

For electric utilities and their power grids, there are a wide variety of useful analytics. These 
range from very low level signal analytics (primarily digital signal processing) to power system 
performance metrics, to consumer behavior analytics. Figure 2 below illustrates a taxonomy of 
analytics for smart grids. Based on the foregoing definition and discussion, it is clear that low 
level signal processing operations can be analytics; hence the category of signal analytics. In 
other areas, we find more traditional KPI’s, metrics, and figures of merit, as well as the outputs 
of event correlation, pattern classification, and various detection processes. 
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Figure 2 Power Grid Analytics Taxonomy 

In any complex system, such as s smart grid, the set of useful analytics can be quite large, and 
many different analytics may be applied to the same data in order to support multiple 
capabilities and outcomes. In fact, one of the design problems for smart grid is to select the set 
of analytics that maximize the useful information extracted across all desired outcomes, from a 
minimized set of sensors. Such designs relay upon a core set of analytics components, as well 
as foundation services for processing, integration, and support. To design a robust and efficient 
analytics system, one must understand the synergies that can be achieved across analytics 
classes, as well as the relationships to data classes and capabilities classes. Figure 3 below 
illustrates this set of abstract relationships for smart grids. 



Figure 3 Smart Grid Analytics Component, Service and Synergy Models 

Visualization is an integral part of any smart grid analytics system, and it seems likely that this holds true 
for any large complex system. Applying the concept of system state, we can see how to integrate many 
levels of visualization with the data acquisition system. Applying hierarchical layering, we can arrive at a 
multi-layer visualization approach that resembles generalized version of the layers model used by many 
geographic information systems. In such a model, compositing of logical visualization layers can provide 
for very flexible visualization solutions. Figure 4 shows an example of how to integrate layered 
visualization with extended grid state and control processes. 



 Figure 4 Layered Visualization 

Analytics may be implemented in a fully centralized manner, such us usually done with 
Business Intelligence tools, which operate on a very large business data repository. However, 
for real time systems, a more distributed approach may be useful in avoiding the inevitable 
bottlenecking. A tool that is particularly suited to processing two classes of smart grid data 
(streaming telemetry and asynchronous event messages) is Complex Event Processing (CEP) 
which has lately also been called streaming database processing. CEP and its single stream 
predecessor Event Stream Processing (ESP) can be arranged into a hierarchical distributed 
processing architecture that efficiently reduces data volumes while preserving essential 
information embodies in multiple data streams. Figure 5 shows an example of such analytics 
architecture. In this case, the analytics process line sensor data and meter events for fault and 
outage intelligence. 



Figure 5 Hierarchical CEP/ESP Analytics Architecture 

In general, distributed analytics can be decomposed in to a limited set of analytic computing 
elements, with logical connections to other such elements. Full distributed analytics can be 
constructed by composing or interconnecting basic analytic elements as needed. We have 
defined five basic types of distributed analytic elements: 

1. Local loop – an analytic element operates on data reports its final result to a consuming 
application such as a low latency control 

2. Upload – an analytic element operates on data and then reports out its final result 

3. Hierarchical – two or more analytic elements operate on data to produce partial analytics 
results which are then fused by a higher level analytics element, which reports the result 

4. Peer to peer – two or more analytics elements operate on data to create partial results; 
they then exchange partial results to compute final result and each one reports its 
unique final analytic 

5. Database access – an analytic element retrieves data from a data store in addition to 
local data; it operates on  both to produce a result which can be stored in the data store 
or reported to an application or another analytic element 



Figure 6 illustrates these five basic types plus a generic node synthesized from the five basic 
prototypes. 

 

Figure 6 Distributed Analytic Basic Element Types 

 

Distributed Data Persistence 

Given the introduction of the concept of distributed analytics, including the database access 
element shown in Figure 6, it becomes useful to consider distributed data persistence as an 
architectural element. Low level and low latency analytics for smart grids (mostly related to 
control) require state information and while local state components are always needed, it is 
often the case that elements of global state are also necessary. Operational data (essentially 
extended system state) may be persisted in a distributed operational data store. The reason for 
considering a true distributed data store is for scalability and robustness in the face of potential 



network fragmentation. In power systems, it is already common practice to implement 
distributed time series (historian) databases at the control center and primary substation levels. 
We may incorporate this and the distributed operational data store into an integrated data 
architecture by employing data federation in conjunction with various data stores. Figure 7 
below illustrates a data store architecture that federates distributed and centralized elements in 
order to support a wide range of analytics, controls, and decision support for business 
processes. 

 

Figure 7 Integrated Data Store Architecture for Smart Grids 

 



Conclusion 

Ultra Large Scale Systems that have underlying physical networks and dynamics, especially 
those needing control inherently incorporate several classes of data flows.  The characteristics 
of these classes are key requirements for system architecture. As the scale of smart grids and 
similar large scale control-oriented systems increases, the volumes of data expand beyond the 
abilities and capacities of traditional data management systems. A variety of data management 
tools must be brought into play, including distributed data stores, as part of a hierarchy of data 
persistence tools. 

Analytics, needed to extract actionable information from masses of data, must be considered in 
conjunction with data classes and data management issues in the design of ULS solutions. The 
importance of analytics is two-fold: first and foremost as the means to interpret “big data” and 
secondly as a means to perform data management for large scale data flows. 

With a proper definition of data management and analytics, the task of managing big data, such 
as the data associated with smart grids and other physical systems, is strengthened 
considerably. The ability to view analytics as a processing chain or hierarchy leads to the 
concept of distributed analytics, as well as distributed data persistence. 


