Skip to Main Content U.S. Department of Energy
Energy and Environment Directorate


Battery Materials & Systems Group

92 publications found:


  • Anh Thieu N., W. Li, X. Chen, S. Hu, H. Tian, H. Ngoc Ngan Tran, and W. Li, et al. 2023. "An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries." Batteries 9, no. 1:Art. No. 41. PNNL-SA-181059. doi:10.3390/batteries9010041
  • Buyuker I., B. Pei, H. Zhou, X. Cao, Z. Yu, S. Liu, and W. Zhang, et al. 2023. "Voltage and Temperature Limits of Advanced Electrolytes for Lithium-Metal Batteries." ACS Energy Letters 8, no. 4:1735-1743. PNNL-SA-181739. doi:10.1021/acsenergylett.3c00235
  • Cao X., Y. Xu, L. Zou, J. Bao, Y. Chen, B.E. Matthews, and J. Hu, et al. 2023. "Stability of solid electrolyte interphases and calendar life of lithium metal batteries." Energy & Environmental Science 16, no. 4:1548-1559. PNNL-SA-167955. doi:10.1039/D2EE03557J
  • Chen Y., J. Bao, Z. Xu, P. Gao, L. Yan, S. Kim, and W. Wang. 2023. "A hybrid analytical and numerical model for cross-over and performance decay in a unit cell vanadium redox flow battery." Journal of Power Sources 578. PNNL-SA-181017. doi:10.1016/j.jpowsour.2023.233210
  • Fu Y., J. Bao, C. Zeng, Y. Chen, Z. Xu, S. Kim, and W. Wang. 2023. "A Three-Dimensional Pore-scale Model for Redox Flow Battery Electrode Design Analysis." Journal of Power Sources 556. PNNL-SA-175492. doi:10.1016/j.jpowsour.2022.232329
  • Fu Y., R.K. Singh, S. Feng, J. Liu, J. Xiao, J. Bao, and Z. Xu, et al. 2023. "Understanding of Low-Porosity Sulfur Electrode for High-Energy Lithium-Sulfur Batteries." Advanced Energy Materials 13, no. 13:2203386. PNNL-SA-178343. doi:10.1002/aenm.202203386
  • Jhang L., D. Wang, A. Silver, X. Li, D.M. Reed, and D. Wang. 2023. "Stable All-Solid-State Sodium-Sulfur Batteries for Low-Temperature Operation Enabled by Sodium Alloy Anode and Confined Sulfur Cathode." Nano Energy 105. PNNL-SA-179672. doi:10.1016/j.nanoen.2022.107995
  • Kautz D.J., X. Cao, P. Gao, B.E. Matthews, Y. Xu, K. Han, and F.O. Omenya, et al. 2023. "Designing Electrolytes With Controlled Solvation Structure for Fast-Charging Lithium-Ion Batteries." Advanced Energy Materials 13, no. 35:Art. No. 2301199. PNNL-SA-184367. doi:10.1002/aenm.202301199
  • Lim H., W. Kwak, D. Nguyen, W. Wang, W. Xu, and J. Zhang. 2023. "Three-Dimensionally Semi-Ordered Macroporous Air Electrodes for Metal-Oxygen Batteries." Journal of Materials Chemistry A 11, no. 11:5746-5753. PNNL-SA-180310. doi:10.1039/D2TA09442H
  • Omenya F.O., M.D. Paiss, X. Li, and D.M. Reed. 2023. "Energy and Power Evolution Over the Lifetime of a Battery." ACS Energy Letters 8, no. 6:2707–2710. PNNL-SA-183422. doi:10.1021/acsenergylett.3c00660
  • Viswanathan V.V., A.J. Crawford, E.C. Thomsen, N. Shamim, G. Li, Q. Huang, and D.M. Reed. 2023. "An overview of the design and optimized operation of vanadium redox flow batteries for durations in the range of 4-24 hours." Batteries 9, no. 4:Art. No. 221. PNNL-SA-182087. doi:10.3390/batteries9040221
  • Weller J.M., M.M. Li, E. Polikarpov, K. Han, N. Kidner, A. Patel, and M. Nguyen, et al. 2023. "Unlocking the NaCl-AlCl3 Phase Diagram for Low-Cost, Long-Duration Na-Al Batteries." Energy Storage Materials 56. PNNL-ACT-SA-10696. doi:10.1016/j.ensm.2023.01.009


  • Fayette M.R., H. Chang, X. Li, and D.M. Reed. 2022. "High Performance InZn Alloy Anodes Towards Practical Aqueous Zinc Batteries." ACS Energy Letters 7. PNNL-SA-170149. doi:10.1021/acsenergylett.2c00843
  • Feng S., J. Liu, X. Zhang, L. Shi, C.S. Anderson, Y. Lin, and M. Song, et al. 2022. "Rationalizing Nitrogen-doped Secondary Carbon Particles for Practical Lithium-Sulfur Batteries." Nano Energy 103, no. Part A:Art. No. 107794. PNNL-SA-175294. doi:10.1016/j.nanoen.2022.107794
  • Feng S., R.K. Singh, Z. Li, Y. Wang, Y. Fu, J. Bao, and Z. Xu, et al. 2022. "Low-Tortuous and Dense Single-Particle-Layer Electrode for High-Energy Lithium-Sulfur Batteries." Energy & Environmental Science 15, no. 9:3842-3853. PNNL-SA-161239. doi:10.1039/D2EE01442D
  • Gao P., A. Andersen, J.P. Sepulveda, G.U. Panapitiya, A.M. Hollas, E.G. Saldanha, and V. Murugesan, et al. 2022. "SOMAS: a platform for data-driven material discovery in redox flow battery development." Scientific Data 9. PNNL-SA-161978. doi:10.1038/s41597-022-01814-4
  • Hou S., L. Chen, X. Fan, X. Fan, X. Ji, B. Wang, and C. Cui, et al. 2022. "High-Energy and Low-Cost Membrane-free Chlorine Flow Battery." Nature Communications 13. PNNL-SA-158978. doi:10.1038/s41467-022-28880-x
  • Howard A.A., T. Yu, W. Wang, and A.M. Tartakovsky. 2022. "Physics-informed CoKriging model of a redox flow battery." Journal of Power Sources 542. PNNL-SA-162807. doi:10.1016/j.jpowsour.2022.231668
  • Huang Q., C. Song, A.J. Crawford, Z. Jiang, A. Platt, K. Fatih, and C. Bock, et al. 2022. "An Ultra-Stable Reference Electrode Development for Scaled All-Vanadium Redox Flow Batteries." RSC Advances 12, no. 50:32173-32184. PNNL-SA-164273. doi:10.1039/D2RA05781F
  • Jang T., L. Mishra, S. Roberts, B. Planden, A. Subramaniam, M. Uppaluri, and D. Linder, et al. 2022. "BattPhase – A convergent, non-oscillatory, efficient algorithm and code for predicting shape changes in lithium metal batteries using phase-field models: Part I. Secondary Current Distribution." Journal of the Electrochemical Society 169, no. 8:Art. No. 80516. PNNL-SA-177270. doi:10.1149/1945-7111/ac86a7
  • Li Q., R. Yi, Y. Xu, X. Cao, C. Wang, W. Xu, and J. Zhang. 2022. "Failure analysis and design principles of silicon-based lithium-ion batteries using micron-sized porous silicon/carbon composite." Journal of Power Sources 548, no. n/a:232063. PNNL-SA-168200. doi:10.1016/j.jpowsour.2022.232063
  • Lim H., S. Chae, L. Yan, G. Li, R. Feng, Y. Shin, and Z. Nie, et al. 2022. "Crosslinked Polyethyleneimine Gel Polymer Interface to Improve Cycling Stability of RFBs." Energy Material Advances 2022. PNNL-SA-160359. doi:10.34133/2022/9863679
  • Omenya F.O., B. Xiao, D.M. Reed, and X. Li. 2022. "Sodium-ion Battery." In Encyclopedia of Energy Storage, edited by L.F. Cabeza. 191-206. Amsterdam:Elsevier. PNNL-SA-154462. doi:10.1016/B978-0-12-819723-3.00032-9
  • Panapitiya G.U., M.K. Girard, A.M. Hollas, J.P. Sepulveda, V. Murugesan, W. Wang, and E.G. Saldanha. 2022. "Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction." ACS Omega 7, no. 18:15695–15710. PNNL-SA-161618. doi:10.1021/acsomega.2c00642
  • Shamim N., V.V. Viswanathan, E.C. Thomsen, G. Li, D.M. Reed, and V.L. Sprenkle. 2022. "Valve Regulated Lead Acid Battery Evaluation under Peak Shaving and Frequency Regulation Duty Cycles." Energies 15, no. 9:Art. No. 3389. PNNL-SA-170871. doi:10.3390/en15093389
  • Strange L.E., M.H. Engelhard, Z. Yu, and D. Lu. 2022. "Li7P2S8Br0.5I0.5 (LiPSBI) Solid State Electrolyte by XPS." Surface Science Spectra 29, no. 2:Art. No. 024008. PNNL-SA-172992. doi:10.1116/6.0001963
  • Yan L., X. Xie, Y. Shao, and D.M. Reed. 2022. High-performing Electrocatalysts for Oxygen Reduction and Evolution for Energy Storage. PNNL-32934. Richland, WA: Pacific Northwest National Laboratory. High-performing Electrocatalysts for Oxygen Reduction and Evolution for Energy Storage
  • Zeng C., S. Kim, Y. Chen, Y. Fu, J. Bao, Z. Xu, and W. Wang. 2022. "Characterization of electrochemical behavior for aqueous organic redox flow batteries." Journal of Electrochemical Society 169, no. 12:Art. No. 120527. PNNL-SA-178207. doi:10.1149/1945-7111/acadad
  • Zhang X., P. Gao, Z. Wu, M.H. Engelhard, X. Cao, H. Jia, and Y. Xu, et al. 2022. "Pinned Electrode/Electrolyte Interphase and Its Formation Origin for Sulfurized Polyacrylonitrile Cathode in Stable Lithium Batteries." ACS Applied Materials & Interfaces 14, no. 46:52046–52057. PNNL-SA-175354. doi:10.1021/acsami.2c16890
  • Zhou J., P. Chen, W. Wang, and X. Zhang. 2022. "Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications." Chemical Engineering Journal 446, no. Part 1:Art. No. 137041. PNNL-SA-168712. doi:10.1016/j.cej.2022.137041


  • Bazak J.D., A.R. Wong, K. Duanmu, K. Han, D.M. Reed, and V. Murugesan. 2021. "Concentration-Dependent Solvation Structure and Dynamics of Aqueous Sulfuric Acid Using Multinuclear NMR and DFT." Journal of Physical Chemistry B 125, no. 19:5089-5099. PNNL-SA-159548. doi:10.1021/acs.jpcb.1c01177
  • Cao X., H. Jia, W. Xu, and J. Zhang. 2021. "Review-Localized high-concentration electrolytes for lithium batteries." Journal of the Electrochemical Society 168, no. 1:010522. PNNL-SA-157885. doi:10.1149/1945-7111/abd60e
  • Cao X., L. Zou, B.E. Matthews, L. Zhang, X. He, X. Ren, and M.H. Engelhard, et al. 2021. "Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries." Energy Storage Materials 34, no. n/a:76-84. PNNL-SA-153014. doi:10.1016/j.ensm.2020.08.035
  • Cao X., P. Gao, X. Ren, L. Zou, M.H. Engelhard, B.E. Matthews, and J. Hu, et al. 2021. "Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries." Proceedings of the National Academy of Sciences (PNAS). 118, no. 9:e2020357118. PNNL-SA-154541. doi:10.1073/pnas.2020357118
  • Chang H., I.A. Rodriguez Perez, M.R. Fayette, N.L. Canfield, H. Pan, D. Choi, and X. Li, et al. 2021. "Effects of Water-Based Binders on Electrochemical Performance of Manganese Dioxide Cathode in Mild Aqueous Zinc Batteries." Carbon Energy 3, no. 3:473-481. PNNL-SA-154267. doi:10.1002/cey2.84
  • Chen Y., J. Bao, Z. Xu, P. Gao, L. Yan, S. Kim, and W. Wang. 2021. "A two-dimensional analytical unit cell model for redox flow battery evaluation and optimization." Journal of Power Sources 506. PNNL-SA-159241. doi:10.1016/j.jpowsour.2021.230192
  • Choi D., N. Shamim, A.J. Crawford, Q. Huang, C.K. Vartanian, V.V. Viswanathan, and M.D. Paiss, et al. 2021. "LI-ION BATTERY TECHNOLOGY FOR GRID APPLICATION." Journal of Power Sources 511. PNNL-SA-161888. doi:10.1016/j.jpowsour.2021.230419
  • Chu Y., U. Sanyal, X.S. Li, Y. Qiu, M. Song, M.H. Engelhard, and S.D. Davidson, et al. 2021. "Tuning proton transfer and catalytic properties in triple junction nanostructured catalyts." Nano Energy 86. PNNL-SA-156457. doi:10.1016/j.nanoen.2021.106046
  • Feng R., X. Zhang, V. Murugesan, A.M. Hollas, Y. Chen, Y. Shao, and E.D. Walter, et al. 2021. "Reversible Ketone Hydrogenation and Dehydrogenation for Aqueous Organic Redox Flow Batteries." Science 372, no. 6544:836–840. PNNL-SA-154606. doi:10.1126/science.abd9795
  • Gao P., H. Wu, X. Zhang, H. Jia, J. Kim, M.H. Engelhard, and C. Niu, et al. 2021. "Optimization of Magnesium-Doped Lithium Metal Anode for High Performance Lithium Metal Batteries through Modeling and Experiment." Angewandte Chemie International Edition 60, no. 30:16506-16513. PNNL-SA-155950. doi:10.1002/anie.202103344
  • Gao P., X. Yang, Y. Tang, M. Zheng, A. Andersen, V. Murugesan, and A.M. Hollas, et al. 2021. "Graphical Gaussian Process Regression Model for Aqueous Solvation Free Energy Prediction of Organic Molecules in Redox Flow Battery." Physical Chemistry Chemical Physics 23, no. 43:24892-24904. PNNL-SA-161057. doi:10.1039/D1CP04475C
  • Hankins K.S., V. Prabhakaran, S. Wi, V. Shutthanandan, G.E. Johnson, S. Roy, and H. Wang, et al. 2021. "Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li-S Batteries." The Journal of Physical Chemistry Letters 12, no. 38:9360–9367. PNNL-SA-159986. doi:10.1021/acs.jpclett.1c01930
  • Hu J., L. Li, E. Hu, S. Chae, H. Jia, T. Liu, and B. Wu, et al. 2021. "Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries." Nano Energy 79. PNNL-SA-153829. doi:10.1016/j.nanoen.2020.105420
  • Li M.M., X. Lu, X. Zhan, M.H. Engelhard, J.F. Bonnett, E. Polikarpov, and K. Jung, et al. 2021. "High Performance Sodium-Sulfur Battery at Low Temperature Enabled by Superior Molten Na Wettability." Chemical Communications. PNNL-SA-158605.
  • Li X., P. Gao, Y. Lai, J.D. Bazak, A.M. Hollas, H. Lin, and V. Murugesan, et al. 2021. "Symmetry-Breaking Design of an Organic Iron Complex Catholyte for a Long Cyclability Aqueous Organic Redox Flow Battery." Nature Energy 6, no. 9:873–881. PNNL-SA-157300. doi:10.1038/s41560-021-00879-6
  • Lim H., W. Kwak, S. Chae, S. Wi, L. Li, J. Hu, and J. Tao, et al. 2021. "Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium–Oxygen Batteries." ACS Energy Letters 6, no. 9:3321–3331. PNNL-SA-162928. doi:10.1021/acsenergylett.1c01144
  • Liu X., B. Xiao, A. Daali, X. Zhou, Z. Yu, X. Li, and Y. Liu, et al. 2021. "Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries." ACS Energy Letters 6, no. 2:547-556. PNNL-SA-158864. doi:10.1021/acsenergylett.0c02650
  • Liu Y., X. Wu, C. Niu, W. Xu, X. Cao, J. Zhang, and X. Jiang, et al. 2021. "Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries." ACS Energy Letters 6, no. 4:1550–1559. PNNL-SA-158156. doi:10.1021/acsenergylett.1c00186
  • Modachur Sivakumar B., V. Prabhakaran, K. Duanmu, E.C. Thomsen, B. Berland, N. Gomez, and D.M. Reed, et al. 2021. "Long-Term Structural and Chemical Stability of Carbon Electrodes in Vanadium Redox Flow Battery." ACS Applied Energy Materials 4, no. 6:6074-6081. PNNL-SA-160926. doi:10.1021/acsaem.1c00912
  • Murugesan V., Z. Nie, X. Zhang, P. Gao, Z. Zhu, Q. Huang, and L. Yan, et al. 2021. "Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry." Cell Reports Physical Science 2, no. 2:Article No. 100323. PNNL-SA-161062. doi:10.1016/j.xcrp.2021.100323
  • Nambukara Wellala N.P., A.M. Hollas, K. Duanmu, V. Murugesan, X. Zhang, R. Feng, and Y. Shao, et al. 2021. "Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes." Journal of Materials Chemistry A 9, no. 38:21918-21928. PNNL-SA-161713. doi:10.1039/D1TA03655F
  • Niu C., D. Liu, J.A. Lochala, C.S. Anderson, X. Cao, M.E. Gross, and W. Xu, et al. 2021. "Balancing Interfacial Reactions to Achieve Long Cycle Life in High Energy Lithium Metal Batteries." Nature Energy 6, no. 7:723-732. PNNL-SA-158492. doi:10.1038/s41560-021-00852-3
  • Qiao Y., C. Chen, Y. Liu, Y. Liu, Q. Dong, Y. Yao, and X. Wang, et al. 2021. "Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts." Nano Letters 21, no. 11:4517-4523. PNNL-SA-155816. doi:10.1021/acs.nanolett.0c03620
  • Qiu Y., X. Xie, W. Li, and Y. Shao. 2021. "Electrocatalysts Development for Hydrogen Oxidation Reaction in Alkaline Media: from Mechanism Understanding to Materials Design." Chinese Journal of Catalysis 42, no. 12:2094-2104. PNNL-SA-159087. doi:10.1016/S1872-2067(21)64088-3
  • Rodriguez Perez I.A., H. Chang, M.R. Fayette, B. Modachur Sivakumar, D. Choi, X. Li, and D.M. Reed. 2021. "Mechanistic Investigation of Redox Processes in Zn-MnO2 battery in Mild Aqueous Electrolytes." Journal of Materials Chemistry A 9, no. 36:20766-20775. PNNL-SA-163119. doi:10.1039/D1TA05022B
  • Shamim N., E.C. Thomsen, V.V. Viswanathan, D.M. Reed, V.L. Sprenkle, and G. Li. 2021. "Evaluating ZEBRA battery module under the peak-shaving duty cycles." Materials 14, no. 9:2280. PNNL-SA-160793. doi:10.3390/ma14092280
  • Shao Y., S. Kim, L. Yan, R.F. Zheng, W. Du, Y. Liu, and R. Huang, et al. 2021. Long-duration Energy Storage Technology Analysis and Development. PNNL-32513. Richland, WA: Pacific Northwest National Laboratory. Long-duration Energy Storage Technology Analysis and Development
  • Vartanian C.K., M.D. Paiss, V.V. Viswanathan, J.T. Kolln, and D.M. Reed. 2021. "Review of Codes and Standards for Energy Storage Systems." Current Sustainable/Renewable Energy Reports 8, no. 3:138 - 148. PNNL-SA-157921. doi:10.1007/s40518-021-00182-8
  • Wang H., J. Ryu, Y. Shao, V. Murugesan, K.A. Persson, K.R. Zavadil, and K.T. Mueller, et al. 2021. "Advancing electrolyte solution chemistry and interfacial electrochemistry of divalent metal batteries." ChemElectroChem 8. PNNL-SA-160255. doi:10.1002/celc.202100484
  • Wang W. 2021. "A Membrane with Repelling Power." Nature Energy 6, no. 5:452-453. PNNL-SA-160127. doi:10.1038/s41560-021-00811-y
  • Wu H., H. Jia, C. Wang, J. Zhang, and W. Xu. 2021. "Recent progress in understanding solid electrolyte interphase on lithium metal anode." Advanced Energy Materials 11, no. 5:2003092. PNNL-SA-155507. doi:10.1002/aenm.202003092
  • Wu H., P. Gao, H. Jia, L. Zou, L. Zhang, X. Cao, and M.H. Engelhard, et al. 2021. "A Polymer-in-Salt Electrolyte with Enhanced Oxidative Stability for Lithium Metal Polymer Batteries." ACS Applied Materials & Interfaces 13, no. 27:31583–31593. PNNL-SA-159667. doi:10.1021/acsami.1c04637
  • Xiao B., F.O. Omenya, D.M. Reed, and X. Li. 2021. "A Glance of the Layered Transition Metal Oxide Cathodes in Sodium and Lithium-ion Batteries: Difference and Similarities." Nanotechnology 32, no. 42:422501. PNNL-SA-158844. doi:10.1088/1361-6528/ac12eb
  • Xiao B., X. Liu, M. Song, X. Yang, F.O. Omenya, S. Feng, and V.L. Sprenkle, et al. 2021. "A General Strategy for Batch Development of High-Performance and Cost-Effective Sodium Layered Cathodes." Nano Energy 89, no. Part A:106371. PNNL-SA-159970. doi:10.1016/j.nanoen.2021.106371
  • Xiao B., Y. Wang, S. Tan, M. Song, X. Li, Y. Zhang, and F. Lin, et al. 2021. "Vacancy-Enabled O3 Phase Stabilization for Manganese-rich Layered Sodium Cathodes." Angewandte Chemie International Edition 60, no. 15:8258-8267. PNNL-SA-158592. doi:10.1002/ange.202016334
  • Yang G., S. Frisco, T. Runming, N. Philip, T. Bennett, C. Stetson, and J. Zhang, et al. 2021. "Robust Solid/Electrolyte Interphase (SEI) formation on Si Anodes Using Glyme-based Electrolytes." ACS Energy Letters 6, no. 5:1684-1693. PNNL-SA-160822. doi:10.1021/acsenergylett.0c02629
  • Zhang J., Q. Li, and H. Lim. 2021. Optimization of Localized High Concentration Electrolytes (LHCE) for Li LiCoO2 Batteries used in Consumer Electronics Applications: Final Report for I3T Project 75934. PNNL-31906. Richland, WA: Pacific Northwest National Laboratory. Optimization of Localized High Concentration Electrolytes (LHCE) for Li LiCoO2 Batteries used in Consumer Electronics Applications: Final Report for I3T Project 75934


  • Beltran S.P., X. Cao, J. Zhang, and P.B. Balbuena. 2020. "Localized High Concentration Electrolytes for High Voltage Lithium-Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability." Chemistry of Materials 32, no. 14:5973–5984. PNNL-SA-155664. doi:10.1021/acs.chemmater.0c00987
  • Bi Y., J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, and B. Wu, et al. 2020. "Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode." Science 370, no. 6522:1313-1317. PNNL-SA-152319. doi:10.1126/science.abc3167
  • Edgecomb J.M., X. Xie, Y. Shao, P.Z. El-Khoury, G.E. Johnson, and V. Prabhakaran. 2020. "Mapping localized peroxyl radical generation on a PEM fuel cell catalyst using integrated scanning electrochemical cell microspectroscopy." Frontiers in Chemistry 8. PNNL-SA-153799. doi:10.3389/fchem.2020.572563
  • Fayette M.R., H. Chang, I.A. Rodriguez Perez, X. Li, and D.M. Reed. 2020. "Electrodeposited Zinc-based Films as Anodes for Aqueous Zinc Batteries." ACS Applied Materials & Interfaces 12, no. 38:42763–42772. PNNL-SA-153746. doi:10.1021/acsami.0c10956
  • Huang Q., B. Li, C. Song, Z. Jiang, A. Platt, K. Fatih, and C. Bock, et al. 2020. "In Situ Reliability Investigation of All-Vanadium Redox Flow Batteries by a Stable Reference Electrode." Journal of the Electrochemical Society 167, no. 16:Article No. 160541. PNNL-SA-153527. doi:10.1149/1945-7111/abd30a
  • Jia H., P. Gao, L. Zou, K. Han, M.H. Engelhard, Y. He, and X. Zhang, et al. 2020. "Controlling Ion Coordination Structure and Diffusion Kinetics for Optimized Electrode-Electrolyte Interphases and High Performance Si Anodes." Chemistry of Materials 32, no. 20:8956–8964. PNNL-SA-153813. doi:10.1021/acs.chemmater.0c02954
  • Jin L., C. Shen, A. Shellikeri, Q. Wu, J. Zheng, P. Andrei, and J. Zhang, et al. 2020. "Progress and Perspectives on Pre-lithiation Technologies for Lithium Ion Capacitors." Energy & Environmental Science 13, no. 8:2341-2362. PNNL-SA-155574. doi:10.1039/D0EE00807A
  • Jin Y., Y. Xu, P. Le, T.D. Vo, Q. Zhou, X. Qi, and M.H. Engelhard, et al. 2020. "Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases." ACS Energy Letters 5, no. 10:3212-3220. PNNL-SA-153228. doi:10.1021/acsenergylett.0c01712
  • Liu J., R.J. Cavagnaro, Z. Deng, Y. Shao, L. Kuo, M. Nguyen, and V. Glezakou. 2020. "Renewable Ammonia as An Energy Fuel for Ocean Exploration and Transportation." Marine Technology Society Journal 54, no. 6:126-136. PNNL-SA-154458. doi:10.4031/MTSJ.54.6.12
  • Lu K., B. Li, X. Zhan, F. Xiao, O.J. Dahunsi, S. Gao, and D.M. Reed, et al. 2020. "Elastic NaxMoS2-carbon-BASE triple interface direct robust solid-solid interface for all-solid-state Na-S batteries." Nano Letters 20, no. 9:6837-6844. PNNL-SA-154081. doi:10.1021/acs.nanolett.0c02871
  • Lu K., Y. Liu, F. Lin, I.A. Cordova, S. Gao, B. Li, and B. Peng, et al. 2020. "LixNiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity." Journal of the American Chemical Society 142, no. 29:12613–12619. PNNL-SA-151006. doi:10.1021/jacs.0c00241
  • Ren X., P. Gao, L. Zou, S. Jiao, X. Cao, X. Zhang, and H. Jia, et al. 2020. "Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries." Proceedings of the National Academy of Sciences (PNAS) 117, no. 46:28603-28613. PNNL-SA-153382. doi:10.1073/pnas.2010852117
  • Ren X., X. Zhang, Z. Shadike, L. Zou, H. Jia, X. Cao, and M.H. Engelhard, et al. 2020. "Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li || LiCoO2 Batteries." Advanced Materials 32, no. 49:2004898. PNNL-SA-154434. doi:10.1002/adma.202004898
  • Rodriguez Perez I.A., L. Zhang, J. Wrogemann, D.M. Driscoll, M.L. Sushko, K. Han, and J.L. Fulton, et al. 2020. "Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries." Advanced Energy Materials 10, no. 41:2001256. PNNL-SA-150985. doi:10.1002/aenm.202001256
  • Xiao J., Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, and J. Liu, et al. 2020. "Understanding and applying coulombic efficiency in lithium metal batteries." Nature Energy 5, no. 8:561-568. PNNL-SA-152318. doi:10.1038/s41560-020-0648-z
  • Xie X., C. He, B. Li, Y. He, D.A. Cullen, E.C. Wegener, and A. Kropf, et al. 2020. "Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells." Nature Catalysis 3, no. 12:1044-1054. PNNL-SA-151274. doi:10.1038/s41929-020-00546-1
  • Xu Y., H. Wu, H. Jia, J. Zhang, X. Wu, and C. Wang. 2020. "Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by Cryogenic Transmission Electron Microscopy." ACS Nano 14, no. 7:8766-8775. PNNL-SA-152803. doi:10.1021/acsnano.0c03344
  • Xu Y., H. Wu, H. Jia, M.H. Engelhard, J. Zhang, W. Xu, and C. Wang. 2020. "Sweeping potential regulated structural and chemical evolution of solid-electrolyte interphase on Cu and Li as revealed by cryo-TEM." Nano Energy 76, no. n/a:105040. PNNL-SA-153402. doi:10.1016/j.nanoen.2020.105040
  • Zhan X., M.E. Bowden, X. Lu, J.F. Bonnett, T.L. Lemmon, D.M. Reed, and V.L. Sprenkle, et al. 2020. "Na-FeCl2 Batteries: A Low-Cost Durable Na-FeCl2 Battery with Ultrahigh Rate Capability (Adv. Energy Mater. 10/2020)." Advanced Energy Materials 10, no. 10:Article No. 2070042. PNNL-SA-152309. doi:10.1002/aenm.202070042
  • Zhang L., Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, and X. Guo, et al. 2020. "Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries." Nature Communications 11, no. 1:Article No. 3843. PNNL-SA-152812. doi:10.1038/s41467-020-17662-y
  • Zhang Q., C. Zhang, L. Cui, T. Jian, Y. Chen, X. Li, and C. Chen, et al. 2020. "Sequence-defined Peptoids with -OH and -COOH Groups as Binders to Reduce Cracks of Si Nanoparticles of Lithium-Ion Batteries." Advanced Science 7, no. 18:2000749. PNNL-SA-153025. doi:10.1002/advs.202000749
  • Zhang X., H. Jia, Y. Xu, L. Zou, M.H. Engelhard, B.E. Matthews, and C. Wang, et al. 2020. "Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte." Journal of Power Sources Advances 5, no. n/a:100024. PNNL-SA-152836. doi:10.1016/j.powera.2020.100024
  • Zou L., Y. He, Z. Liu, H. Jia, J. Zhu, J. Zheng, and G. Wang, et al. 2020. "Unlocking the passivation nature of the cathode-air interfacial reaction in lithium ion batteries." Nature Communications 11, no. 2020:3204. PNNL-SA-152810. doi:10.1038/s41467-020-17050-6


  • Wang Y., J. Xiao, D. Lu, Y. He, G.J. Harvey, C. Wang, and J. Zhang, et al. 2019. "Superionic Conduction and Interfacial Properties of the Low Temperature Phase Li7P2S8Br0.5I0.5." Energy Storage Materials 19. PNNL-SA-134611. doi:10.1016/j.ensm.2019.02.029


  • Lei Z., J. Yang, Y. He, Y. Shao, S.X. Mao, C. Wang, and Y. Nuli, et al. 2017. "LiMnPO4·Li3V2(PO4)3 composite cathode material derived from Mn(VO3)2 nanosheet precursor." Journal of Alloys and Compounds 695. PNNL-SA-162248. doi:10.1016/j.jallcom.2016.11.013

Energy and Environment

Core Research Areas