Skip to Main Content U.S. Department of Energy
Energy and Environment Directorate

Miki Santosa

Miki Santosa

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352
(509) 372-4821

Biography

Daniel Miki Santosa is a chemical engineer from the University of Washington and has a broad research background and skillset. His career started with the development of an operational prototype separation system for capturing stranded landfill gases in a start-up natural gas company. Before that, he has a broad research experience at the University of Washington in both clinical research and bioengineering as an undergraduate student. His expertise includes process development of laboratory and engineering prototypes, reactor scale up, reaction engineering, techno-economic analysis and project management. Currently, he is the capability manager for bench-scale pyrolysis and hydrotreating systems for upgrading of biomass to fuels and chemicals at the group.

Research Interests

  • Process development- fast pyrolysis and catalytic upgrading of pyrolysis products to fuels and chemicals.
  • Biomass feedstock characterization with empirical validation utilizing PNNL’s pyrolysis conversion process.
  • Techno-Economic-Analysis (TEA) for fuels and chemicals production from biomass

Education and Credentials

  • B.S., in Chemical Engineering, University of Washington, 2007 (with specialization in biotechnology)
  • P.E., Professional Engineer in Chemical Engineering, 2013
  • M.S., in Engineering Science, Washington State University, 2019.

PNNL Publications

2024

  • Adarsh Kumar F., A. Kumar, D.M. Santosa, H. Wang, P. Zuo, C. Wang, and A. Mittal, et al. 2024. "Engineered Ru on HY Zeolite Catalyst for Continuous and Selective Hydrodeoxygenation of Lignin Phenolics to Cycloalkanes Under Moderate Conditions." Applied Catalysis A: General 676. PNNL-SA-195736. doi:10.1016/j.apcata.2024.119649

2023

  • Dutta A., H. Cai, M. Talmadge, C. Mukarakate, K. Iisa, H. Wang, and D.M. Santosa, et al. 2023. "Model quantification of the effect of coproducts and refinery co-hydrotreating on the economics and greenhouse gas emissions of a conceptual biomass catalytic fast pyrolysis process." Chemical Engineering Journal 451, no. Part 1:Art. No. 138485. PNNL-SA-171094. doi:10.1016/j.cej.2022.138485
  • Kilgore U.J., D.M. Santosa, S. Li, P. Wang, S. Lee, M.R. Thorson, and K. Kallupalayam Ramasamy. 2023. "Desalting Biocrude for Improved Downstream Processing toward Marine Fuel Application." Sustainable Energy & Fuels 7, no. 11:2670-2679. PNNL-SA-181968. doi:10.1039/D3SE00189J
  • Zhu Y., Y. Xu, A.J. Schmidt, M.R. Thorson, D.J. Cronin, D.M. Santosa, and S.J. Edmundson, et al. 2023. Microalgae Hydrothermal Liquefaction and Biocrude Upgrading: 2022 State of Technology. PNNL-34032. Richland, WA: Pacific Northwest National Laboratory. Microalgae Hydrothermal Liquefaction and Biocrude Upgrading: 2022 State of Technology

2022

  • Santosa D.M., I.V. Kutnyakov, M.D. Flake, and H. Wang. 2022. "Coprocessing biomass fast pyrolysis and catalytic fast pyrolysis oils with vacuum gas oil in refinery hydroprocessing." Energy and Fuels 36, no. 20:12641-12650. PNNL-SA-175776. doi:10.1021/acs.energyfuels.2c02367
  • Santosa D.M., L. Wendt, B.D. Wahlen, A.J. Schmidt, J.M. Billing, I.V. Kutnyakov, and R.T. Hallen, et al. 2022. "Impact of storage and blending of algae and forest product residue on fuel blendstock production." Algal Research 62. PNNL-SA-169550. doi:10.1016/j.algal.2021.102622
  • Snowden-Swan L.J., S. Li, M.R. Thorson, A.J. Schmidt, D.J. Cronin, Y. Zhu, and T.R. Hart, et al. 2022. Wet Waste Hydrothermal Liquefaction and Biocrude Upgrading to Hydrocarbon Fuels: 2022 State of Technology. PNNL-33622. Richland, WA: Pacific Northwest National Laboratory. Wet Waste Hydrothermal Liquefaction and Biocrude Upgrading to Hydrocarbon Fuels: 2022 State of Technology
  • Snowden-Swan L.J., S. Li, Y. Jiang, M.R. Thorson, A.J. Schmidt, T.E. Seiple, and J.M. Billing, et al. 2022. Wet Waste Hydrothermal Liquefaction and Biocrude Upgrading to Hydrocarbon Fuels: 2021 State of Technology. PNNL-32731. Richland, WA: Pacific Northwest National Laboratory. doi:10.2172/1863608.Wet Waste Hydrothermal Liquefaction and Biocrude Upgrading to Hydrocarbon Fuels: 2021 State of Technology

2021

  • Adiga P.P., N. Doi, C. Wong, D.M. Santosa, L. Kuo, G.A. Gill, and J.A. Silverstein, et al. 2021. "The Influence of Transitional Metal Dopants on Reducing Chlorine Evolution During the Electrolysis of Raw Seawater." Applied Sciences 11, no. 24:Art. No. 11911. PNNL-SA-165321. doi:10.3390/app112411911
  • Asmussen R.M., K.A. Stoerzinger, L. Kuo, N. Doi, D.M. Santosa, and G.A. Gill. 2021. The Storage of Marine Hydrokinetic Power through Hydrogen Production. PNNL-29248. Richland, WA: Pacific Northwest National Laboratory. The Storage of Marine Hydrokinetic Power through Hydrogen Production
  • Subramaniam S., D.M. Santosa, C.O. Brady, M.S. Swita, K. Kallupalayam Ramasamy, and M.R. Thorson. 2021. "Extended catalyst lifetime testing for HTL biocrude hydrotreating to produce fuel blendstocks from wet wastes." ACS Sustainable Chemistry & Engineering 9, no. 38:12825-12832. PNNL-SA-161175. doi:10.1021/acssuschemeng.1c02743
  • Thorson M.R., D.M. Santosa, R.T. Hallen, I.V. Kutnyakov, M.V. Olarte, M.D. Flake, and G.G. Neuenschwander, et al. 2021. "SCALEABLE HYDROTREATING OF HTL BIOCRUDE TO PRODUCE FUEL BLENDSTOCKS." Energy and Fuels 35, no. 14:11346-11352. PNNL-SA-160510. doi:10.1021/acs.energyfuels.1c00956

2020

  • Agblevor F., H. Wang, S. Beis, K. Christian, A. Slade, O. Hietsoi, and D.M. Santosa. 2020. "Reformulated Red mud: a robust catalyst for in situ catalytic pyrolysis of biomass." Energy and Fuels 34, no. 3:3272-3283. PNNL-SA-150426. doi:10.1021/acs.energyfuels.9b04015
  • Klinger J., D. Carpenter, V. Thompson, N. Yancey, R. Emerson, K. Gaston, and K.M. Smith, et al. 2020. "Pilot plant reliability metrics for grinding and fast pyrolysis of woody residues." ACS Sustainable Chemistry & Engineering 8, no. 7:2793-2805. PNNL-SA-150427. doi:10.1021/acssuschemeng.9b06718
  • Santosa D.M., C. Zhu, F. Agblevor, B. Maddi, B.Q. Roberts, I.V. Kutnyakov, and S. Lee, et al. 2020. "In Situ Catalytic Fast Pyrolysis using Red Mud Catalyst: Impact of catalytic fast pyrolysis temperature and biomass feedstocks." ACS Sustainable Chemistry & Engineering 8, no. 13:5156-5164. PNNL-SA-150428. doi:10.1021/acssuschemeng.9b07439
  • Zhu Y., S.B. Jones, A.J. Schmidt, J.M. Billing, D.M. Santosa, and D.B. Anderson. 2020. "Economic Impacts of Feeding Microalgae/Wood Blends to Hydrothermal Liquefaction and Upgrading Systems." Algal Research 51. PNNL-SA-148746. doi:10.1016/j.algal.2020.102053

2019

  • Collett J.R., J.M. Billing, P.A. Meyer, A.J. Schmidt, A.B. Remington, E. Hawley, and B.A. Hofstad, et al. 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover." Applied Energy 233. PNNL-SA-133222. doi:10.1016/j.apenergy.2018.09.115
  • Gaspar D.J., S.D. Phillips, E. Polikarpov, K.O. Albrecht, S.B. Jones, A. George, and A. Landera, et al. 2019. "Measuring and Predicting the Vapor Pressure of Gasoline Containing Oxygenates." Fuel 243. PNNL-SA-131615. doi:10.1016/j.fuel.2019.01.137

2018

  • Griffin M.B., K. Iisa, H. Wang, A. Dutta, K.A. Orton, R. French, and D.M. Santosa, et al. 2018. "Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration." Energy & Environmental Science 11, no. 10:2904-2918. PNNL-SA-136791. doi:10.1039/C8EE01872C
  • Sorunmu Y.E., P. Billen, E. Elangovan, D.M. Santosa, and S. Spatari. 2018. "Life-Cycle Assessment of Alternative Pyrolysis-Based Transport Fuels: Implications of Upgrading Technology, Scale, and Hydrogen Requirement." ACS Sustainable Chemistry & Engineering 6, no. 8:10001-10010. PNNL-SA-133675. doi:10.1021/acssuschemeng.8b01266

2017

  • Carpenter D., T. Westover, D.T. Howe, S. Deutch, A. Starace, R. Emerson, and S. Hernandez, et al. 2017. "Catalytic Hydroprocessing of Fast Pyrolysis Oils: Impact of Biomass Feedstock on Process Efficiency." Biomass & Bioenergy 96. PNNL-SA-117747. doi:10.1016/j.biombioe.2016.09.012
  • Elangovan E., D. Larsen, I. Bay, E. Mitchell, J. Hartvigsen, B. Millett, and J. Elwell, et al. 2017. "Electrochemical Upgrading of Bio-Oil." ECS Transactions 78, no. 1:3149-3158. PNNL-SA-125430. doi:10.1149/07801.3149ecst
  • Li Z., J. Choi, H. Wang, A.W. Lepore, R.M. Connatser, S. Lewis, and H. Meyer, et al. 2017. "Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-Oil." Energy and Fuels 31, no. 9:9585-9594. PNNL-SA-128200. doi:10.1021/acs.energyfuels.7b01707

2016

  • Agblevor F., D.C. Elliott, D.M. Santosa, M.V. Olarte, S.D. Burton, M.S. Swita, and S. Beis, et al. 2016. "Red Mud Catalytic Pyrolysis of Pinyon Juniper and Single-Stage Hydotreatment of Oils." Energy and Fuels 30, no. 10:7947-7958. PNNL-SA-122742. doi:10.1021/acs.energyfuels.6b00925
  • Ramasamy K.K., M.J. Gray, H.M. Job, D.M. Santosa, X.S. Li, A. Devaraj, and A.J. Karkamkar, et al. 2016. "Role of Calcination Temperature on the Hydrotalcite Derived MgO-Al2O3 in Converting Ethanol to Butanol." Topics in Catalysis 59, no. 1:46-54. PNNL-SA-110874. doi:10.1007/s11244-015-0504-8

2015

  • Howe D.T., T. Westover, D. Carpenter, D.M. Santosa, R. Emerson, S. Deutch, and A. Starace, et al. 2015. "Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway." Energy and Fuels 29, no. 5:3188-3197. PNNL-SA-108317. doi:10.1021/acs.energyfuels.5b00304

2014

  • Zacher A.H., D.C. Elliott, M.V. Olarte, D.M. Santosa, F. Preto, and K. Iisa. 2014. "Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel." Energy and Fuels 28, no. 12:7510-7516. PNNL-SA-104767. doi:10.1021/ef5017945
  • Zacher A.H., M.V. Olarte, D.M. Santosa, D.C. Elliott, and S.B. Jones. 2014. "A Review and Perspective of Recent Bio-Oil Hydrotreating Research." Green Chemistry 16, no. 2:885-896. PNNL-SA-96894. doi:10.1039/c3gc41782d

Energy and Environment

Core Research Areas

Contacts