Skip to Main Content U.S. Department of Energy
Energy and Environment Directorate

Wei Wang

Wei Wang

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352
(509) 372-4097

Biography

Dr. Wei Wang is an internationally recognized expert in the field of large-scale energy storage for his innovative work on convectional energy storage technologies. He is currently the director of the Energy Storage Materials Initiative, a multi-million-dollar and multi-year project at Pacific Northwest National Laboratory (PNNL) to fundamentally transform the energy material R&D through a physics-informed data-driven approach. He also serves as the chief scientist and technical lead on stationary energy storage R&D at PNNL, which covers a diverse portfolio of redox flow, lithium-ion, and sodium-ion batteries. Dr. Wang joined PNNL in 2009 after receiving Ph.D. in Materials Science and Engineering from Carnegie Mellon University.

Dr. Wang is one of the top 1% Highly Cited Researchers in energy storage. He is also the recipient of multiple highly regarded awards, including US EPA Green Chemistry Challenge Award, US DOE ARPA-E OPEN program award, FLC Excellence in Technology Transfer Award, R&D 100 Award, and Ronald L. Brodzinski Early Career Exceptional Achievement Award. His research has been widely covered by highly regarded science media, such as Science, Nature, and R&D magazine. He has received 16 patents with multiple patent applications. The technologies developed by his team have been licensed to the companies in the US and aboard.

Dr. Wang is the co-founder of the International Coalition for Energy Storage and Innovation (ICESI), and currently serves as ICESI’s general secretory. He is also an active conference/symposium organizer in the area of energy storage for several professional organizations including MRS, ECS, and NAATBatt.

Research Interests

  • Material science and electrochemistry.
  • Materials development and system integration of various energy storage systems
  • Data-driven energy materials research
  • Innovative energy storage technologies

Education and Credentials

  • Ph.D., Materials Science and Engineering, Carnegie Mellon University
  • M.S., Materials Science and Engineering, Clemson University
  • B.A., Ceramic Engineering, East China University of Science and Technology

Affiliations and Professional Service

  • Materials Research Society (MRS)
  • The Electrochemical Society (ECS)
  • Actively serves in various committees in MRS and ECS. Frequent conference and symposium organizer for ICESI, MRS, ECS, and NAATBatt.
  • Proposal reviewer for various DOE and NSF programs
  • Journal reviewer for Nature, Science, Nature Energy, Nature Communications, Joule, Chem, Journal of the American Chemical Society, Nano Letters, Advanced Materials, Advanced Energy Materials, Energy & Environmental Science, etc.

Awards and Recognitions

  • 2018 Clarivate 1% Highly Cited Researcher
  • 2017 US EPA Green Chemistry Challenge Award
  • 2015 Awardee of US DOE ARPA-E’s OPEN 2015 program
  • 2015 Publication of The Year Award from PNNL
  • 2014 FLC Far West Region Outstanding Technology Development
  • 2013 FLC Award for Excellence in Technology Transfer
  • 2012 Ronald L. Brodzinski Award for Early Career Exceptional Achievement
  • 2012 R&D 100 Award
  • 2012 PNNL Exceptional Contribution Award
  • 2012~2019 PNNL Key Contributor Award

PNNL Patents

PNNL Publications

2024

  • Chen Y., C. Zeng, Y. Fu, J. Bao, P. Gao, J.Q. Chen, and Z. Xu, et al. 2024. Evaluating large scale aqueous organic redox flow battery performance with a hybrid numerical and machine learning framework. PNNL-36650. Richland, WA: Pacific Northwest National Laboratory. Evaluating large scale aqueous organic redox flow battery performance with a hybrid numerical and machine learning framework
  • Dean W., M. Munoz, J. Noh, Y. Liang, W. Wang, and B. Gurkan. 2024. "Tuning and high throughput experimental screening of eutectic electrolytes with co-solvents for redox flow batteries." Electrochimica Acta 474. PNNL-SA-194516. doi:10.1016/j.electacta.2023.143517
  • Martin W.A., H.M. Job, Y. Liang, R. Feng, P. Gao, D. Liu, and L. Zhong, et al. 2024. "High Throughput Electrochemical Screening of Phosphate-Rich Nonflammable Electrolytes in Lithium-Ion Batteries." Journal of Electrochemical Society 171, no. 9:090526. PNNL-SA-188369. doi:10.1149/1945-7111/ad7c81

2023

  • Chen Y., J. Bao, Z. Xu, P. Gao, L. Yan, S. Kim, and W. Wang. 2023. "A hybrid analytical and numerical model for cross-over and performance decay in a unit cell vanadium redox flow battery." Journal of Power Sources 578. PNNL-SA-181017. doi:10.1016/j.jpowsour.2023.233210
  • Feng R., Y. Chen, X. Zhang, B. Rousseau, P. Gao, P. Chen, and S.T. Mergelsberg, et al. 2023. "Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte." Joule 7, no. 7:1609-1622. PNNL-SA-174628. doi:10.1016/j.joule.2023.06.013
  • Fu Y., J. Bao, C. Zeng, Y. Chen, Z. Xu, S. Kim, and W. Wang. 2023. "A Three-Dimensional Pore-scale Model for Redox Flow Battery Electrode Design Analysis." Journal of Power Sources 556. PNNL-SA-175492. doi:10.1016/j.jpowsour.2022.232329
  • Kim S., L. Yan, and W. Wang. 2023. "Asymmetric vanadium-based aqueous flow batteries." In Flow Batteries: From Fundamentals to Applications, edited by C. Roth, J. Noack, and M. Skyllas-Kazacos. 689-708. PNNL-SA-181361. doi:10.1002/9783527832767
  • Liang Y., H.M. Job, R. Feng, F.C. Parks, A.M. Hollas, X. Zhang, and M.E. Bowden, et al. 2023. "High-throughput solubility determination for data-driven materials design and discovery in redox flow battery research." Cell Reports Physical Science 4, no. 10:Art. No. 101633. PNNL-SA-182963. doi:10.1016/j.xcrp.2023.101633
  • Lim H., C. Venkata Subban, D. Nguyen, T.S. Nasoetion, T. Liu, K. Han, and B. Modachur Sivakumar, et al. 2023. Room Temperature Electrorefining of Rare Earth Metals from End-of-use Nd-Fe-B Magnets. PNNL-34948. Richland, WA: Pacific Northwest National Laboratory. Room Temperature Electrorefining of Rare Earth Metals from End-of-use Nd-Fe-B Magnets
  • Lim H., W. Kwak, D. Nguyen, W. Wang, W. Xu, and J. Zhang. 2023. "Three-Dimensionally Semi-Ordered Macroporous Air Electrodes for Metal-Oxygen Batteries." Journal of Materials Chemistry A 11, no. 11:5746-5753. PNNL-SA-180310. doi:10.1039/D2TA09442H
  • Liu J., Z. Zhang, X. Li, M. Zong, Y. Wang, S. Wang, and P. Chen, et al. 2023. "Machine Learning Assisted Phase and Size-Controlled Synthesis of Iron Oxide Particles." Chemical Engineering Journal 473. PNNL-SA-188720. doi:10.1016/j.cej.2023.145216
  • Yan L., X. Zang, Z. Nie, L. Zhong, Z. Deng, and W. Wang. 2023. "Online and Noninvasive Monitoring of Battery Health at Negative-half Cell in All-Vanadium Redox Flow Batteries Using Ultrasound." Journal of Power Sources 580. PNNL-SA-174447. doi:10.1016/j.jpowsour.2023.233417

2022

  • Feng S., R.K. Singh, Z. Li, Y. Wang, Y. Fu, J. Bao, and Z. Xu, et al. 2022. "Low-Tortuous and Dense Single-Particle-Layer Electrode for High-Energy Lithium-Sulfur Batteries." Energy & Environmental Science 15, no. 9:3842-3853. PNNL-SA-161239. doi:10.1039/D2EE01442D
  • Gao P., A. Andersen, J.P. Sepulveda, G.U. Panapitiya, A.M. Hollas, E.G. Saldanha, and V. Murugesan, et al. 2022. "SOMAS: a platform for data-driven material discovery in redox flow battery development." Scientific Data 9. PNNL-SA-161978. doi:10.1038/s41597-022-01814-4
  • Hou S., L. Chen, X. Fan, X. Fan, X. Ji, B. Wang, and C. Cui, et al. 2022. "High-Energy and Low-Cost Membrane-free Chlorine Flow Battery." Nature Communications 13. PNNL-SA-158978. doi:10.1038/s41467-022-28880-x
  • Howard A.A., T. Yu, W. Wang, and A.M. Tartakovsky. 2022. "Physics-informed CoKriging model of a redox flow battery." Journal of Power Sources 542. PNNL-SA-162807. doi:10.1016/j.jpowsour.2022.231668
  • Panapitiya G.U., M.K. Girard, A.M. Hollas, J.P. Sepulveda, V. Murugesan, W. Wang, and E.G. Saldanha. 2022. "Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction." ACS Omega 7, no. 18:15695-15710. PNNL-SA-161618. doi:10.1021/acsomega.2c00642
  • Zeng C., S. Kim, Y. Chen, Y. Fu, J. Bao, Z. Xu, and W. Wang. 2022. "Characterization of electrochemical behavior for aqueous organic redox flow batteries." Journal of Electrochemical Society 169, no. 12:Art. No. 120527. PNNL-SA-178207. doi:10.1149/1945-7111/acadad
  • Zhou J., P. Chen, W. Wang, and X. Zhang. 2022. "Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications." Chemical Engineering Journal 446, no. Part 1:Art. No. 137041. PNNL-SA-168712. doi:10.1016/j.cej.2022.137041

2021

  • Chen Y., J. Bao, Z. Xu, P. Gao, L. Yan, S. Kim, and W. Wang. 2021. "A two-dimensional analytical unit cell model for redox flow battery evaluation and optimization." Journal of Power Sources 506. PNNL-SA-159241. doi:10.1016/j.jpowsour.2021.230192
  • Chen Y., Z. Xu, C. Wang, J. Bao, B.J. Koeppel, L. Yan, and P. Gao, et al. 2021. "Analytical modeling for redox flow battery design." Journal of Power Sources 482. PNNL-SA-150736. doi:10.1016/j.jpowsour.2020.228817
  • Feng R., X. Zhang, V. Murugesan, A.M. Hollas, Y. Chen, Y. Shao, and E.D. Walter, et al. 2021. "Reversible Ketone Hydrogenation and Dehydrogenation for Aqueous Organic Redox Flow Batteries." Science 372, no. 6544:836-840. PNNL-SA-154606. doi:10.1126/science.abd9795
  • Gao P., X. Yang, Y. Tang, M. Zheng, A. Andersen, V. Murugesan, and A.M. Hollas, et al. 2021. "Graphical Gaussian Process Regression Model for Aqueous Solvation Free Energy Prediction of Organic Molecules in Redox Flow Battery." Physical Chemistry Chemical Physics 23, no. 43:24892-24904. PNNL-SA-161057. doi:10.1039/D1CP04475C
  • Murugesan V., Z. Nie, X. Zhang, P. Gao, Z. Zhu, Q. Huang, and L. Yan, et al. 2021. "Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry." Cell Reports Physical Science 2, no. 2:Article No. 100323. PNNL-SA-161062. doi:10.1016/j.xcrp.2021.100323
  • Nambukara Wellala N.P., A.M. Hollas, K. Duanmu, V. Murugesan, X. Zhang, R. Feng, and Y. Shao, et al. 2021. "Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes." Journal of Materials Chemistry A 9, no. 38:21918-21928. PNNL-SA-161713. doi:10.1039/D1TA03655F
  • Wang W. 2021. "A Membrane with Repelling Power." Nature Energy 6, no. 5:452-453. PNNL-SA-160127. doi:10.1038/s41560-021-00811-y

2020

  • Bao J., V. Murugesan, C.J. Kamp, Y. Shao, L. Yan, and W. Wang. 2020. "Machine learning coupled multi-scale modeling for redox flow batteries." Advanced Theory and Simulations 3, no. 2:Article No. 1900167. PNNL-SA-148857. doi:10.1002/adts.201900167
  • Zhang L., Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, and X. Guo, et al. 2020. "Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries." Nature Communications 11, no. 1:Article No. 3843. PNNL-SA-152812. doi:10.1038/s41467-020-17662-y

2019

  • Zang X., L. Yan, Y. Yang, H. Pan, Z. Nie, K. Jung, and Z. Deng, et al. 2019. "Monitoring the state-of-charge of a vanadium redox flow battery with the acoustic attenuation coefficient: an in operando noninvasive method." Small Methods 3, no. 12:1900494. PNNL-SA-141602. doi:10.1002/smtd.201900494

2018

  • Duan W., B. Li, D. Lu, X. Wei, Z. Nie, V. Murugesan, and J.P. Kizewski, et al. 2018. "Towards an All-Vanadium Redox Flow Battery with Higher Theoretical Volumetric Capacities by Utilizing the VO2+/V3+ Couple." Journal of Energy Chemistry 27, no. 5:1381-1385. PNNL-SA-127931. doi:10.1016/j.jechem.2018.05.020
  • Hollas A.M., X. Wei, V. Murugesan, Z. Nie, B. Li, D.M. Reed, and J. Liu, et al. 2018. "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries." Nature Energy 3, no. 6:508-514. PNNL-SA-130788. doi:10.1038/s41560-018-0167-3
  • Huang J., Z. Yang, V. Murugesan, W. Duan, A.M. Hollas, B. Pan, and W. Wang, et al. 2018. "A Two-Electron Storage Nonaqueous Organic Redox Flow Battery." Advanced Sustainable Systems 2, no. 3:1700131. PNNL-SA-128375. doi:10.1002/adsu.201700131
  • Xie C., H. Zhang, W. Xu, W. Wang, and X. Li. 2018. "A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density." Angewandte Chemie International Edition 57, no. 35:11171-11176. PNNL-SA-131307. doi:10.1002/anie.201803122
  • Xu P., C. Xie, C. Wang, Q. Lai, W. Wang, H. Zhang, and X. Li. 2018. "A membrane-free Interfacial Battery with High Energy Density." Chemical Communications 54, no. 82:11626-11629. PNNL-SA-129368. doi:10.1039/c8cc06048g

2017

  • Duan W., J. Huang, J.A. Kowalski, I.A. Shkrob, V. Murugesan, E.D. Walter, and B. Pan, et al. 2017. "“Wine-Dark Sea” in An Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability." ACS Energy Letters 2, no. 5:1156-1161. PNNL-SA-120607. doi:10.1021/acsenergylett.7b00261
  • Wei X., W. Pan, W. Duan, A.M. Hollas, Z. Yang, B. Li, and Z. Nie, et al. 2017. "Materials and Systems for Organic Flow Batteries: Status and Challenges." ACS Energy Letters 2, no. 9:2187-2204. PNNL-SA-128015. doi:10.1021/acsenergylett.7b00650
  • Zhang J., Z. Yang, I.A. Shkrob, R.S. Assary, S. Tung, B. Silcox, and W. Duan, et al. 2017. "Annulated dialkoxybenzenes as catholyte materials for nonaqueous redox flow batteries: achieving high chemical stability through bicyclic substitution." Advanced Energy Materials 7, no. 21:1701272. PNNL-SA-125834. doi:10.1002/aenm.201701272

2016

  • Cheng Y., L. Luo, L. Zhong, J. Chen, B. Li, W. Wang, and S.X. Mao, et al. 2016. "Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries." ACS Applied Materials & Interfaces 8, no. 22:13673-13677. PNNL-SA-116513. doi:10.1021/acsami.6b03197
  • Deng X., M.Y. Hu, X. Wei, W. Wang, K.T. Mueller, Z. Chen, and J.Z. Hu. 2016. "Nuclear Magnetic Resonance Studies of the Solvation Structures of a High-Performance Nonaqueous Redox Flow Electrolyte." Journal of Power Sources 308. PNNL-SA-113232. doi:10.1016/j.jpowsour.2015.12.005
  • Duan W., V.S. Vemuri, J.D. Milshtein, S. Laramie, R.D. Dmello, J. Huang, and L. Zhang, et al. 2016. "A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR." Journal of Materials Chemistry A 4, no. 15:5448-5456. PNNL-SA-115896. doi:10.1039/c6ta01177b
  • Estevez L., D.M. Reed, Z. Nie, A.M. Schwarz, M.I. Nandasiri, J.P. Kizewski, and W. Wang, et al. 2016. "Tunable oxygen functional groups as electro-catalysts on graphite felt surfaces for all vanadium flow batteries." ChemSusChem 9, no. 12:1455-1461. PNNL-SA-113820. doi:10.1002/cssc.201600198
  • Han K., N. Rajput, M. Vijayakumar, X. Wei, W. Wang, J.Z. Hu, and K.A. Persson, et al. 2016. "Preferential Solvation of an Asymmetric Redox Molecule." Journal of Physical Chemistry C 120, no. 49:27834-27839. PNNL-SA-113547. doi:10.1021/acs.jpcc.6b09114
  • Huang J., B. Pan, W. Duan, X. Wei, R.S. Assary, L. Su, and F. Brushett, et al. 2016. "The lightest organic radical cation for charge storage in redox flow batteries." Scientific Reports 6. PNNL-SA-114980. doi:10.1038/srep32102
  • Li B., J. Liu, Z. Nie, W. Wang, D.M. Reed, J. Liu, and B.P. McGrail, et al. 2016. "Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries." Nano Letters 16, no. 7:4335-4340. PNNL-SA-116994. doi:10.1021/acs.nanolett.6b01426
  • Liu T.L., X. Wei, Z. Nie, V.L. Sprenkle, and W. Wang. 2016. "A Total Organic Aqueous Redox Flow Battery Employing Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte." Advanced Energy Materials 6, no. 3:Article No. 1501449. PNNL-SA-110796. doi:10.1002/aenm.201501449
  • Park M., J. Ryu, W. Wang, and J. Cho. 2016. "Material design and engineering of next-generation flow-battery technologies." Nature Reviews Materials 2. PNNL-SA-119674. doi:10.1038/natrevmats.2016.80
  • Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and J.P. Kizewski, et al. 2016. "Stack Developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory." Journal of the Electrochemical Society 163, no. 1:A5211-A5219. PNNL-SA-112057. doi:10.1149/2.0281601jes
  • Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and V.L. Sprenkle. 2016. "Performance of a Low Cost Interdigitated Flow Design on a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 306. PNNL-SA-112126. doi:10.1016/j.jpowsour.2015.11.089
  • Vijayakumar M., Q. Luo, R.B. Lloyd, Z. Nie, X. Wei, B. Li, and V.L. Sprenkle, et al. 2016. "Tuning the perfluorosulfonic acid membrane morphology for vanadium redox flow batteries." ACS Applied Materials & Interfaces 8, no. 50:34327-34334. PNNL-SA-115747. doi:10.1021/acsami.6b10744
  • Wang W., and V.L. Sprenkle. 2016. "Energy storage: Redox Flow Batteries Go Organic." Nature Chemistry 8, no. 3:204-206. PNNL-SA-115256. doi:10.1038/nchem.2466
  • Wei X., W. Duan, J. Huang, L. Zhang, B. Li, D.M. Reed, and W. Xu, et al. 2016. "A High-Current, Stable Nonaqueous Organic Redox Flow Battery." ACS Energy Letters 1, no. 4:705-711. PNNL-SA-112127. doi:10.1021/acsenergylett.6b00255
  • Xiao L., Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, and W. Wang, et al. 2016. "Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries." Nano Energy 19. PNNL-SA-115004. doi:10.1016/j.nanoen.2015.10.034

2015

  • Cosimbescu L., X. Wei, M. Vijayakumar, W. Xu, M.L. Helm, S.D. Burton, and C.M. Sorensen, et al. 2015. "Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds." Scientific Reports 5. PNNL-SA-104406. doi:10.1038/srep14117
  • Crawford A.J., V.V. Viswanathan, D.E. Stephenson, W. Wang, E.C. Thomsen, D.M. Reed, and B. Li, et al. 2015. "Comparative analysis for various redox flow batteries chemistries using a cost performance model." Journal of Power Sources 293. PNNL-SA-108277. doi:10.1016/j.jpowsour.2015.05.066
  • Deng X., M.Y. Hu, X. Wei, W. Wang, Z. Chen, J. Liu, and J.Z. Hu. 2015. "Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes." Journal of Power Sources 285. PNNL-SA-105759. doi:10.1016/j.jpowsour.2015.03.091
  • Li B., Z. Nie, M. Vijayakumar, G. Li, J. Liu, V.L. Sprenkle, and W. Wang. 2015. "Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery." Nature Communications 6. PNNL-SA-103966. doi:10.1038/ncomms7303
  • Reed D.M., E.C. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, and B.J. Koeppel, et al. 2015. "Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 285. PNNL-SA-108089. doi:10.1016/j.jpowsour.2015.03.099
  • Shao Y., Y. Cheng, W. Duan, W. Wang, Y. Lin, Y. Wang, and J. Liu. 2015. "Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: a Selected Review." ACS Catalysis 5, no. 12:7288-7298. PNNL-SA-112187. doi:10.1021/acscatal.5b01737
  • Vijayakumar M., N. Govind, B. Li, X. Wei, Z. Nie, S. Thevuthasan, and V.L. Sprenkle, et al. 2015. "Aqua-vanadyl ion interaction with Nafion® membranes." Frontiers in Energy Research 3. PNNL-SA-108088. doi:10.3389/fenrg.2015.00010
  • Vijayakumar M., Z. Nie, E.D. Walter, J.Z. Hu, J. Liu, V.L. Sprenkle, and W. Wang. 2015. "Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes." ChemPlusChem 80, no. 2:428-437. PNNL-SA-102555. doi:10.1002/cplu.201402139
  • Wei X., B. Li, and W. Wang. 2015. "Porous Polymeric Composite Separators for Redox Flow Batteries." Polymer Reviews 55, no. 2:247-272. PNNL-SA-103480. doi:10.1080/15583724.2015.1011276
  • Wei X., G. Xia, B.W. Kirby, E.C. Thomsen, B. Li, Z. Nie, and G.L. Graff, et al. 2015. "An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes." Journal of the Electrochemical Society 163, no. 1:A5150-A5153. PNNL-SA-93471. doi:10.1149/2.0221601jes
  • Wei X., L. Cosimbescu, W. Xu, J.Z. Hu, M. Vijayakumar, J. Feng, and M.Y. Hu, et al. 2015. "Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species." Advanced Energy Materials 5, no. 1:Article No. 1400678. PNNL-SA-97506. doi:10.1002/aenm.201400678
  • Wei X., W. Xu, J. Huang, L. Zhang, E.D. Walter, C.W. Lawrence, and M. Vijayakumar, et al. 2015. "Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery." Angewandte Chemie International Edition 127, no. 30:8808-8811. PNNL-SA-107928. doi:10.1002/ange.201501443

2014

  • Han K., N. Rajput, X. Wei, W. Wang, J.Z. Hu, K.A. Persson, and K.T. Mueller. 2014. "Diffusional Motion of Redox Centers in Carbonate Electrolytes." Journal of Chemical Physics 141, no. 10:104509. PNNL-SA-103453. doi:10.1063/1.4894481
  • Ji L., M. Gu, Y. Shao, X. Li, M.H. Engelhard, B.W. Arey, and W. Wang, et al. 2014. "Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage." Advanced Materials 26, no. 18:2901-2908. PNNL-SA-98915. doi:10.1002/adma.201304962
  • Li B., M. Gu, Z. Nie, X. Wei, C.M. Wang, V.L. Sprenkle, and W. Wang. 2014. "Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery." Nano Letters 14, no. 1:158-165. PNNL-SA-98433. doi:10.1021/nl403674a
  • Li B., Q. Luo, X. Wei, Z. Nie, E.C. Thomsen, B. Chen, and V.L. Sprenkle, et al. 2014. "Capacity Decay Mechanism of Microporous Separator-Based All-Vanadium Redox Flow Batteries and its Recovery." ChemSusChem 7, no. 2:577-584. PNNL-SA-94959. doi:10.1002/cssc.201300706
  • Viswanathan V.V., A.J. Crawford, D.E. Stephenson, S. Kim, W. Wang, B. Li, and G.W. Coffey, et al. 2014. "Cost and Performance Model for Redox Flow Batteries." Journal of Power Sources 247. PNNL-SA-91534. doi:10.1016/j.jpowsour.2012.12.023
  • Wang W., X. Wei, D. Choi, X. Lu, G. Yang, and C. Sun. 2014. "Electrochemical cells for medium- and large-scale energy storage." In Advances in Batteries for Medium and Large-Scale Energy Storage, edited by C Menictas, M Skyllas-Kazacos and LT Mariana. 3-28. Waltham, Massachusetts:Woodhead Publishing. PNNL-SA-100840.

2013

  • Kim S., E.C. Thomsen, G. Xia, Z. Nie, J. Bao, K.P. Recknagle, and W. Wang, et al. 2013. "1 kW / 1kWh Advanced Vanadium Redox Flow Battery Utilizing Mixed Acid Electrolytes." Journal of Power Sources 237. PNNL-SA-92689. doi:10.1016/j.jpowsour.2013.02.045
  • Li B., L. Li, W. Wang, Z. Nie, B. Chen, X. Wei, and Q. Luo, et al. 2013. "Fe/V Redox Flow Battery Electrolyte Investigation and Optimization." Journal of Power Sources 229. PNNL-SA-89815. doi:10.1016/j.jpowsour.2012.11.119
  • Li B., M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, and X. Li, et al. 2013. "Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery." Nano Letters 13, no. 3:1330-1335. PNNL-SA-92494. doi:10.1021/nl400223v
  • Luo Q., L. Li, W. Wang, Z. Nie, X. Wei, B. Li, and B. Chen, et al. 2013. "Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries." ChemSusChem 6, no. 2:268-274. PNNL-SA-89997. doi:10.1002/cssc.201200730
  • Sprenkle V.L., W. Wang, Q. Luo, X. Wei, B. Li, Z. Nie, and B. Chen, et al. 2013. "Redox Flow Battery Development for Stationary Energy Storage Applications at Pacific Northwest National Laboratory." In International Flow Battery Forum, June 26-27, 2013, Dublin, Ireland, edited by A. Price and J. Cainey, 48-49. Malmesbury:Swanbarton Limited. PNNL-SA-95927.
  • Vijayakumar M., W. Wang, Z. Nie, V.L. Sprenkle, and J.Z. Hu. 2013. "Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes." Journal of Power Sources 241. PNNL-SA-95082. doi:10.1016/j.jpowsour.2013.04.072
  • Wang W., D. Choi, and Z. Yang. 2013. "Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage." Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science 44A, no. 1 Supplement:21-25. PNNL-SA-74420. doi:10.1007/s11661-012-1284-4
  • Wang W., Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang. 2013. "Recent Progress in Redox Flow Battery Research and Development." Advanced Functional Materials 23, no. 8:970-986. PNNL-SA-86016. doi:10.1002/adfm.201200694
  • Wei X., Q. Luo, B. Li, Z. Nie, E. Miller, J. Chambers, and V.L. Sprenkle, et al. 2013. "Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery." ECS Transactions 45, no. 26:17-24. PNNL-SA-88565. doi:10.1149/04526.0017ecst
  • Wei X., Z. Nie, Q. Luo, B. Li, B. Chen, K.L. Simmons, and V.L. Sprenkle, et al. 2013. "Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane." Advanced Energy Materials 3, no. 9:1215-1220. PNNL-SA-91588. doi:10.1002/aenm.201201112
  • Wei X., Z. Nie, Q. Luo, B. Li, V.L. Sprenkle, and W. Wang. 2013. "Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications." Journal of the Electrochemical Society 160, no. 8:A1215 - A1218. PNNL-SA-92548.
  • Xu W., X. Chen, W. Wang, D. Choi, F. Ding, J. Zheng, and Z. Nie, et al. 2013. "Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries." Journal of Power Sources 236. PNNL-SA-91887. doi:10.1016/j.jpowsour.2013.02.055

2012

  • Cao Y., L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, and Z. Nie, et al. 2012. "Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications." Nano Letters 12, no. 7:3783-3787. PNNL-SA-88364. doi:10.1021/nl3016957
  • Ding F., W. Xu, D. Choi, W. Wang, X. Li, M.H. Engelhard, and X. Chen, et al. 2012. "Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries." Journal of Materials Chemistry 22, no. 25:12745-12751. PNNL-SA-85418. doi:10.1039/c2jm31015e
  • Li X., P. Meduri, X. Chen, W.N. Qi, M.H. Engelhard, W. Xu, and F. Ding, et al. 2012. "Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes." Journal of Materials Chemistry 22, no. 22:11014-11017. PNNL-SA-85843. doi:10.1039/C2JM31286G
  • Luo Q., L. Li, Z. Nie, W. Wang, X. Wei, B. Li, and B. Chen, et al. 2012. "In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery." Journal of Power Sources 218, no. 1:15-20. PNNL-SA-87264. doi:10.1016/j.jpowsour.2012.06.066
  • Stephenson D.E., S. Kim, F. Chen, E.C. Thomsen, V.V. Viswanathan, W. Wang, and V.L. Sprenkle. 2012. "Electrochemical Model of the Fe/V Redox Flow Battery." Journal of the Electrochemical Society 159, no. 12:A1993-A2000. PNNL-SA-88363. doi:10.1149/2.052212jes
  • Wang W., L. Li, Z. Nie, B. Chen, Q. Luo, Y. Shao, and X. Wei, et al. 2012. "A New Hybrid Redox Flow Battery with Multiple Redox Couples." Journal of Power Sources 216. PNNL-SA-84238. doi:10.1016/j.jpowsour.2012.05.032
  • Wang W., W. Xu, L. Cosimbescu, D. Choi, L. Li, and Z. Yang. 2012. "Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery." Chemical Communications 48, no. 53:6669-6671. PNNL-SA-87199. doi:10.1039/C2CC32466K
  • Wang W., Z. Nie, B. Chen, F. Chen, Q. Luo, X. Wei, and G. Xia, et al. 2012. "A New Fe/V Redox Flow Battery Using Sulfuric/Chloric Mixed Acid Supporting Electrolyte." Advanced Energy Materials 2, no. 4:487-493. PNNL-SA-81184. doi:10.1002/aenm.201100527
  • Wei X., L. Li, Q. Luo, Z. Nie, W. Wang, B. Li, and G. Xia, et al. 2012. "Microporous Separators for Fe/V Redox Flow Batteries." Journal of Power Sources 218, no. 1:39-45. PNNL-SA-86902. doi:10.1016/j.jpowsour.2012.06.073
  • Xiao L., Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, and J. Liu. 2012. "High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications." Chemical Communications 48, no. 27:3321-3323. PNNL-SA-85851. doi:10.1039/C2CC17129E
  • Zhang J., W. Wang, J. Xiao, W. Xu, G.L. Graff, Z. Yang, and D. Choi, et al. 2012. "Silicon Based Anodes for Li-Ion Batteries." In Encyclopedia of Sustainability Science and Technology. New York, New York:Springer. PNNL-SA-75702.

2011

  • Cao Y., L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, and L.V. Saraf, et al. 2011. "Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life." Advanced Materials 23, no. 28:3155-3160. PNNL-SA-78702. doi:10.1002/adma.201100904
  • Choi D., J. Xiao, Y. Choi, J.S. Hardy, M. Vijayakumar, M.S. Bhuvaneswari, and J. Liu, et al. 2011. "Thermal Stability and Phase Transformation of Electrochemically Charged/Discharged LiMnPO4 Cathode for Li-Ion Battery." Energy & Environmental Science 4, no. 11:4560-4566. PNNL-SA-79713. doi:10.1039/C1EE01501J
  • Choi D., W. Wang, and Z. Yang. 2011. "Material Challenges and Perspectives." In Lithium Ion Batteries: Advanced Materials and Technologies, edited by X Yuan, et al. 1-50. Boca Raton, Florida:CRC Press. PNNL-SA-76721.
  • Li L., S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, and J. Zhang, et al. 2011. "A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage." Advanced Energy Materials 1, no. 3:394-400. PNNL-SA-75871.
  • Wang W., S. Kim, B. Chen, Z. Nie, J. Zhang, G. Xia, and L. Li, et al. 2011. "A New Redox Flow Battery Using Fe/V Redox Couples in Chloride Supporting Electrolyte." Energy & Environmental Science 4, no. 10:4068-4073. PNNL-SA-76658. doi:10.1039/C0EE00765J
  • Zhang J., L. Li, Z. Nie, B. Chen, M. Vijayakumar, S. Kim, and W. Wang, et al. 2011. "Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries." Journal of Applied Electrochemistry 41, no. 10 - Special Issue S1:1215-1221. PNNL-SA-76986. doi:10.1007/s10800-011-0312-1

2010

  • Choi D., D. Wang, I. Bae, J. Xiao, Z. Nie, W. Wang, and V.V. Viswanathan, et al. 2010. "LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode." Nano Letters 10, no. 8:2799-2805. PNNL-SA-70835. doi:10.1021/nl1007085
  • Xiao J., W. Xu, D. Wang, D. Choi, W. Wang, X. Li, and G.L. Graff, et al. 2010. "Stabilization of Silicon Anode for Li-Ion Batteries." Journal of the Electrochemical Society 157, no. 10:A1047-A1051. PNNL-SA-72047. doi:10.1149/1.3464767
  • Xu T., W. Wang, M. Gordin, D. Wang, and D. Choi. 2010. "Lithium-ion Batteries for Stationary Energy Storage." JOM. The Journal of the Minerals, Metals and Materials Society 62, no. 9:24-30. PNNL-SA-74003.

Energy and Environment

Core Research Areas

Contacts