David Reed
Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352
(509) 375-4534
Send Email
Biography
David Reed has over 20 years of experience in the materials science field. Before joining PNNL in 2010, he worked in industry at 3M in St. Paul, MN and Praxair in Tonawanda, NY. While in industry, David worked in a number of areas including high temperature electrochemistry, materials synthesis and processing, alternative manufacturing methods, dielectric materials, coatings, failure analysis, new materials development, design of experiments, and rapid commercialization processes. His primary focus at PNNL has been developing and testing new materials and components in electrochemical devices. David is currently the PNNL Program Manager for the DOE Office of Electricity sponsored program focus on new electrochemical device technologies for energy storage and Project Manager for several industrial sponsored programs.
Research Interests
- Energy Storage Devices
- High Temperature Electrochemistry
- Microstructure-Property Relations in Materials
- Electroceramic Materials and Composites
- Synthesis and Processing of Materials
- Energy Efficient Buildings
Education and Credentials
- B.S. Ceramic Science and Engineering, Pennsylvania State University
- M.S. Solid State Science, Pennsylvania State University
- Ph.D. Ceramic Engineering, University of Missouri-Rolla
PNNL Patents
- U.S. Patent No. 11,942,595, March 26, 2024, "SEASONAL ENERGY STORAGE TECHNOLOGIES BASED ON RECHARGEABLE BATTERIES".
- U.S. Patent No. 10,381,667, August 13, 2019, "HIGH PERFORMANCE REDOX FLOW BATTERY STACK ".
PNNL Publications
2024
- Chen X., P. Gao, W. Li, N. Anh Thieu, Z. Grady, N.G. Akhmedov, and K.A. Sierros, et al. 2024. "Stabilizing Zn Anodes by Molecular Interface Engineering with Amphiphilic Triblock Copolymer." ACS Energy Letters 9, no. 4:1654-1665. PNNL-SA-196126. doi:10.1021/acsenergylett.3c02824
- Lim W., X. Li, and D.M. Reed. 2024. "Understanding the Role of Zinc Hydroxide Sulfate and its Analogues in Mildly Acidic Aqueous Zinc Batteries: A Review." Small Methods 8, no. 6:Art. No. 2300965. PNNL-SA-188644. doi:10.1002/smtd.202300965
- Nambafu G.S., A.M. Hollas, S. Zhang, P.S. Rice, D. Boglaienko, J.L. Fulton, and M. Li, et al. 2024. "Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery." Nature Communications 15. PNNL-SA-191088. doi:10.1038/s41467-024-45862-3
- Reed D.M. 2024. Reliability and Durability Testing of Glass Ceramic Seals for Praxair's Oxygen Transport Membranes - CRADA 374 (Abstract). PNNL-35292. Richland, WA: Pacific Northwest National Laboratory.
- Shamim N., E.C. Thomsen, A.J. Crawford, V.V. Viswanathan, D.M. Reed, V.L. Sprenkle, and G. Li. 2024. "Investigation of Fe-Ni Battery/Module for Grid Service Duty Cycles." Materials 17, no. 12:Art No. 2935. PNNL-SA-190466. doi:10.3390/ma17122935
- Sun W., N. Kim, A. Ebrahim, S. Sharma, A.M. Hollas, Q. Huang, and D.M. Reed, et al. 2024. "Coupled experimental-theoretical characterization of a carbon electrode in vanadium redox flow batteries using X-ray absorption spectroscopy." ACS Applied Materials & Interfaces 16, no. 7:8791-8801. PNNL-SA-193736. doi:10.1021/acsami.3c17049
- Weller J.M., H. Han, E. Polikarpov, K. Han, V. Shutthanandan, Y. Wang, and M.H. Engelhard, et al. 2024. "Intrinsically sodiophilic, mesoporous metal-free wetting layers based on inexpensive carbon black for sodium-metal batteries." Nano Energy 128, no. Part A:Art. No. 109815. PNNL-SA-194246. doi:10.1016/j.nanoen.2024.109815
- Xiao B., Y. Zheng, M. Song, X. Liu, G. Lee, F.O. Omenya, and X. Yang, et al. 2024. "Protonation Stimulates the Layered to Rock Salt Phase Transition of Ni-rich Sodium Cathodes." Advanced Materials 36, no. 13:Art. No. 2308380. PNNL-SA-169982. doi:10.1002/adma.202308380
2023
- Anh Thieu N., W. Li, X. Chen, Q. Li, Q. Wang, M. Velayutham, and Z. Grady, et al. 2023. "Synergistically Stabilizing Zinc Anodes by Molybdenum Dioxide Coating and Tween 80 Electrolyte Additive for High-Performance Aqueous Zinc-Ion Batteries." ACS Applied Materials & Interfaces 15, no. 48:55570-55586. PNNL-SA-192481. doi:10.1021/acsami.3c08474
- Anh Thieu N., W. Li, X. Chen, S. Hu, H. Tian, H. Ngoc Ngan Tran, and W. Li, et al. 2023. "An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries." Batteries 9, no. 1:Art. No. 41. PNNL-SA-181059. doi:10.3390/batteries9010041
- Chen X., W. Li, D.M. Reed, X. Li, and X. Liu. 2023. "On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode." Electrochemical Energy Reviews 6. PNNL-SA-190722. doi:10.1007/s41918-023-00194-6
- Jhang L., D. Wang, A. Silver, X. Li, D.M. Reed, and D. Wang. 2023. "Stable All-Solid-State Sodium-Sulfur Batteries for Low-Temperature Operation Enabled by Sodium Alloy Anode and Confined Sulfur Cathode." Nano Energy 105. PNNL-SA-179672. doi:10.1016/j.nanoen.2022.107995
- Lucero M., D.B. Armitage, X. Yang, S.K. Sandstrom, M. Lyons, R.C. Davis, and G.E. Sterbinsky, et al. 2023. "Ball-milling Enabled Fe2.4+ to Fe3+ Redox Reaction in Prussian Blue Materials for Long-life Aqueous Sodium-ion Batteries." ACS Applied Materials & Interfaces 15, no. 30:36366-36372. PNNL-SA-184322. doi:10.1021/acsami.3c07304
- Omenya F.O., M.D. Paiss, X. Li, and D.M. Reed. 2023. "Energy and Power Evolution Over the Lifetime of a Battery." ACS Energy Letters 8, no. 6:2707-2710. PNNL-SA-183422. doi:10.1021/acsenergylett.3c00660
- Viswanathan V.V., A.J. Crawford, E.C. Thomsen, N. Shamim, G. Li, Q. Huang, and D.M. Reed. 2023. "An overview of the design and optimized operation of vanadium redox flow batteries for durations in the range of 4-24 hours." Batteries 9, no. 4:Art. No. 221. PNNL-SA-182087. doi:10.3390/batteries9040221
2022
- Fayette M.R., H. Chang, X. Li, and D.M. Reed. 2022. "High Performance InZn Alloy Anodes Towards Practical Aqueous Zinc Batteries." ACS Energy Letters 7. PNNL-SA-170149. doi:10.1021/acsenergylett.2c00843
- Huang Q., C. Song, A.J. Crawford, Z. Jiang, A. Platt, K. Fatih, and C. Bock, et al. 2022. "An Ultra-Stable Reference Electrode Development for Scaled All-Vanadium Redox Flow Batteries." RSC Advances 12, no. 50:32173-32184. PNNL-SA-164273. doi:10.1039/D2RA05781F
- Omenya F.O., B. Xiao, D.M. Reed, and X. Li. 2022. "Sodium-ion Battery." In Encyclopedia of Energy Storage, edited by L.F. Cabeza. 191-206. Amsterdam:Elsevier. PNNL-SA-154462. doi:10.1016/B978-0-12-819723-3.00032-9
- Shamim N., V.V. Viswanathan, E.C. Thomsen, G. Li, D.M. Reed, and V.L. Sprenkle. 2022. "Valve Regulated Lead Acid Battery Evaluation under Peak Shaving and Frequency Regulation Duty Cycles." Energies 15, no. 9:Art. No. 3389. PNNL-SA-170871. doi:10.3390/en15093389
- Yan L., X. Xie, Y. Shao, and D.M. Reed. 2022. High-performing Electrocatalysts for Oxygen Reduction and Evolution for Energy Storage. PNNL-32934. Richland, WA: Pacific Northwest National Laboratory. High-performing Electrocatalysts for Oxygen Reduction and Evolution for Energy Storage
2021
- Chang H., I.A. Rodriguez Perez, M.R. Fayette, N.L. Canfield, H. Pan, D. Choi, and X. Li, et al. 2021. "Effects of Water-Based Binders on Electrochemical Performance of Manganese Dioxide Cathode in Mild Aqueous Zinc Batteries." Carbon Energy 3, no. 3:473-481. PNNL-SA-154267. doi:10.1002/cey2.84
- Choi D., N. Shamim, A.J. Crawford, Q. Huang, C.K. Vartanian, V.V. Viswanathan, and M.D. Paiss, et al. 2021. "LI-ION BATTERY TECHNOLOGY FOR GRID APPLICATION." Journal of Power Sources 511. PNNL-SA-161888. doi:10.1016/j.jpowsour.2021.230419
- Li M.M., X. Lu, X. Zhan, M.H. Engelhard, J.F. Bonnett, E. Polikarpov, and K. Jung, et al. 2021. "High Performance Sodium-Sulfur Battery at Low Temperature Enabled by Superior Molten Na Wettability." Chemical Communications. PNNL-SA-158605.
- Modachur Sivakumar B., V. Prabhakaran, K. Duanmu, E.C. Thomsen, B. Berland, N. Gomez, and D.M. Reed, et al. 2021. "Long-Term Structural and Chemical Stability of Carbon Electrodes in Vanadium Redox Flow Battery." ACS Applied Energy Materials 4, no. 6:6074-6081. PNNL-SA-160926. doi:10.1021/acsaem.1c00912
- Murugesan V., Z. Nie, X. Zhang, P. Gao, Z. Zhu, Q. Huang, and L. Yan, et al. 2021. "Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry." Cell Reports Physical Science 2, no. 2:Article No. 100323. PNNL-SA-161062. doi:10.1016/j.xcrp.2021.100323
- Rodriguez Perez I.A., H. Chang, M.R. Fayette, B. Modachur Sivakumar, D. Choi, X. Li, and D.M. Reed. 2021. "Mechanistic Investigation of Redox Processes in Zn-MnO2 battery in Mild Aqueous Electrolytes." Journal of Materials Chemistry A 9, no. 36:20766-20775. PNNL-SA-163119. doi:10.1039/D1TA05022B
- Shamim N., E.C. Thomsen, V.V. Viswanathan, D.M. Reed, V.L. Sprenkle, and G. Li. 2021. "Evaluating ZEBRA battery module under the peak-shaving duty cycles." Materials 14, no. 9:2280. PNNL-SA-160793. doi:10.3390/ma14092280
- Vartanian C.K., M.D. Paiss, V.V. Viswanathan, J.T. Kolln, and D.M. Reed. 2021. "Review of Codes and Standards for Energy Storage Systems." Current Sustainable/Renewable Energy Reports 8, no. 3:138 - 148. PNNL-SA-157921. doi:10.1007/s40518-021-00182-8
- Xiao B., F.O. Omenya, D.M. Reed, and X. Li. 2021. "A Glance of the Layered Transition Metal Oxide Cathodes in Sodium and Lithium-ion Batteries: Difference and Similarities." Nanotechnology 32, no. 42:422501. PNNL-SA-158844. doi:10.1088/1361-6528/ac12eb
- Xiao B., X. Liu, M. Song, X. Yang, F.O. Omenya, S. Feng, and V.L. Sprenkle, et al. 2021. "A General Strategy for Batch Development of High-Performance and Cost-Effective Sodium Layered Cathodes." Nano Energy 89, no. Part A:106371. PNNL-SA-159970. doi:10.1016/j.nanoen.2021.106371
- Xiao B., Y. Wang, S. Tan, M. Song, X. Li, Y. Zhang, and F. Lin, et al. 2021. "Vacancy-Enabled O3 Phase Stabilization for Manganese-rich Layered Sodium Cathodes." Angewandte Chemie International Edition 60, no. 15:8258-8267. PNNL-SA-158592. doi:10.1002/ange.202016334
2020
- Fayette M.R., H. Chang, I.A. Rodriguez Perez, X. Li, and D.M. Reed. 2020. "Electrodeposited Zinc-based Films as Anodes for Aqueous Zinc Batteries." ACS Applied Materials & Interfaces 12, no. 38:42763-42772. PNNL-SA-153746. doi:10.1021/acsami.0c10956
- Huang Q., B. Li, C. Song, Z. Jiang, A. Platt, K. Fatih, and C. Bock, et al. 2020. "In Situ Reliability Investigation of All-Vanadium Redox Flow Batteries by a Stable Reference Electrode." Journal of the Electrochemical Society 167, no. 16:Article No. 160541. PNNL-SA-153527. doi:10.1149/1945-7111/abd30a
- Lu K., B. Li, X. Zhan, F. Xiao, O.J. Dahunsi, S. Gao, and D.M. Reed, et al. 2020. "Elastic NaxMoS2-carbon-BASE triple interface direct robust solid-solid interface for all-solid-state Na-S batteries." Nano Letters 20, no. 9:6837-6844. PNNL-SA-154081. doi:10.1021/acs.nanolett.0c02871
- Rodriguez Perez I.A., L. Zhang, J. Wrogemann, D.M. Driscoll, M.L. Sushko, K. Han, and J.L. Fulton, et al. 2020. "Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries." Advanced Energy Materials 10, no. 41:2001256. PNNL-SA-150985. doi:10.1002/aenm.202001256
- Song J., K. Wang, J. Zheng, M.H. Engelhard, B. Xiao, E. Hu, and Z. Zhu, et al. 2020. "Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-ion Batteries." ACS Energy Letters 5, no. 6:1718-1725. PNNL-SA-141318. doi:10.1021/acsenergylett.0c00700
- Zhan X., J.F. Bonnett, M.H. Engelhard, D.M. Reed, V.L. Sprenkle, and G. Li. 2020. "A High-Performance Na-Al Battery Based on Reversible NaAlCl4 Catholyte." Advanced Energy Materials 10, no. 40:2001378. PNNL-SA-150192. doi:10.1002/aenm.202001378
- Zhan X., J.P. Sepulveda, X. Lu, J.F. Bonnett, N.L. Canfield, T.L. Lemmon, and K. Jung, et al. 2020. "Elucidating the role of anionic chemistry towards high-rate intermediate-temperature Na-metal halide batteries." Energy storage materials 24. PNNL-SA-143535. doi:10.1016/j.ensm.2019.08.021
- Zhan X., M.E. Bowden, X. Lu, J.F. Bonnett, T.L. Lemmon, D.M. Reed, and V.L. Sprenkle, et al. 2020. "A Low-Cost Durable Na-FeCl2 Battery with Ultrahigh Rate Capability." Advanced Energy Materials 10, no. 10:1903472. PNNL-SA-147633. doi:10.1002/aenm.201903472
- Zhan X., M.E. Bowden, X. Lu, J.F. Bonnett, T.L. Lemmon, D.M. Reed, and V.L. Sprenkle, et al. 2020. "Na-FeCl2 Batteries: A Low-Cost Durable Na-FeCl2 Battery with Ultrahigh Rate Capability (Adv. Energy Mater. 10/2020)." Advanced Energy Materials 10, no. 10:Article No. 2070042. PNNL-SA-152309. doi:10.1002/aenm.202070042
- Zhan X., X. Lu, D.M. Reed, V.L. Sprenkle, and G. Li. 2020. "Emerging Soluble Organic Redox Materials for Next-Generation Grid Energy-Storage Applications." MRS Communications 10, no. 2:215-229. PNNL-SA-150934. doi:10.1557/mrc.2020.27
2019
- Murugesan V., J. Cho, N. Govind, A. Andersen, M.J. Olszta, K. Han, and G. Li, et al. 2019. "Lithium Insertion Mechanism in Iron Fluoride Nanoparticles Prepared by Catalytic Decomposition of Fluoropolymer." ACS Applied Energy Materials 2, no. 3:1832-1843. PNNL-SA-138144. doi:10.1021/acsaem.8b01983
- Song J., D. Xiao, H. Jia, G. Zhu, M.H. Engelhard, B. Xiao, and S. Feng, et al. 2019. "A Comparative Study of Pomegranate Sb@C Yolk-Shell Microspheres as Li and Na-Ion Battery Anodes." Nanoscale 11, no. 1:348-355. PNNL-SA-139714. doi:10.1039/c8nr08461k
- Xiao B., K. Wang, G. Xu, J. Song, Z. Chen, K. Amine, and D.M. Reed, et al. 2019. "Revealing the Atomic Origin of Heterogeneous Li-Ion Diffusion by Probing Na." Advanced Materials 31, no. 29:Article number 1805889. PNNL-SA-137695. doi:10.1002/adma.201805889
2018
- Crawford A.J., Q. Huang, M. Kintner-Meyer, J. Zhang, D.M. Reed, V.L. Sprenkle, and V.V. Viswanathan, et al. 2018. "Lifecycle Comparison of Selected Li-ion Battery Chemistries under Grid and Electric Vehicle Duty Cycle Combinations." Journal of Power Sources 380. PNNL-SA-128874. doi:10.1016/j.jpowsour.2018.01.080
- Hollas A.M., X. Wei, V. Murugesan, Z. Nie, B. Li, D.M. Reed, and J. Liu, et al. 2018. "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries." Nature Energy 3, no. 6:508-514. PNNL-SA-130788. doi:10.1038/s41560-018-0167-3
2017
- Wei X., W. Pan, W. Duan, A.M. Hollas, Z. Yang, B. Li, and Z. Nie, et al. 2017. "Materials and Systems for Organic Flow Batteries: Status and Challenges." ACS Energy Letters 2, no. 9:2187-2204. PNNL-SA-128015. doi:10.1021/acsenergylett.7b00650
2016
- Crawford A.J., E.C. Thomsen, D.M. Reed, D.E. Stephenson, V.L. Sprenkle, J. Liu, and V.V. Viswanathan. 2016. "Development and Validation of Chemistry Agnostic Flow Battery Cost Performance Model and Application to Non-Aqueous Electrolyte Systems." International Journal of Energy Research. PNNL-SA-113966. doi:10.1002/er.3526
- Estevez L., D.M. Reed, Z. Nie, A.M. Schwarz, M.I. Nandasiri, J.P. Kizewski, and W. Wang, et al. 2016. "Tunable oxygen functional groups as electro-catalysts on graphite felt surfaces for all vanadium flow batteries." ChemSusChem 9, no. 12:1455-1461. PNNL-SA-113820. doi:10.1002/cssc.201600198
- Li B., J. Liu, Z. Nie, W. Wang, D.M. Reed, J. Liu, and B.P. McGrail, et al. 2016. "Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries." Nano Letters 16, no. 7:4335-4340. PNNL-SA-116994. doi:10.1021/acs.nanolett.6b01426
- Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and J.P. Kizewski, et al. 2016. "Stack Developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory." Journal of the Electrochemical Society 163, no. 1:A5211-A5219. PNNL-SA-112057. doi:10.1149/2.0281601jes
- Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and V.L. Sprenkle. 2016. "Performance of a Low Cost Interdigitated Flow Design on a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 306. PNNL-SA-112126. doi:10.1016/j.jpowsour.2015.11.089
- Wei X., W. Duan, J. Huang, L. Zhang, B. Li, D.M. Reed, and W. Xu, et al. 2016. "A High-Current, Stable Nonaqueous Organic Redox Flow Battery." ACS Energy Letters 1, no. 4:705-711. PNNL-SA-112127. doi:10.1021/acsenergylett.6b00255
2015
- Crawford A.J., V.V. Viswanathan, D.E. Stephenson, W. Wang, E.C. Thomsen, D.M. Reed, and B. Li, et al. 2015. "Comparative analysis for various redox flow batteries chemistries using a cost performance model." Journal of Power Sources 293. PNNL-SA-108277. doi:10.1016/j.jpowsour.2015.05.066
- Reed D.M., E.C. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, and B.J. Koeppel, et al. 2015. "Performance of NafionŽ N115, NafionŽ NR-212, and NafionŽ NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 285. PNNL-SA-108089. doi:10.1016/j.jpowsour.2015.03.099
2013
- Reed D.M., G.W. Coffey, E.S. Mast, N.L. Canfield, J. Mansurov, X. Lu, and V.L. Sprenkle. 2013. "Wetting of Sodium on ß?-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries." Journal of Power Sources 227. PNNL-SA-89519. doi:10.1016/j.jpowsour.2012.11.034
- Sprenkle V.L., W. Wang, Q. Luo, X. Wei, B. Li, Z. Nie, and B. Chen, et al. 2013. "Redox Flow Battery Development for Stationary Energy Storage Applications at Pacific Northwest National Laboratory." In International Flow Battery Forum, June 26-27, 2013, Dublin, Ireland, edited by A. Price and J. Cainey, 48-49. Malmesbury:Swanbarton Limited. PNNL-SA-95927.