Skip to Main Content U.S. Department of Energy
Energy and Environment Directorate

Huamin Wang

Huamin Wang

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352
(509) 371-6705


Huamin Wang joined PNNL in 2011 after completing his postdoctoral researches at Lawrence Berkeley National Laboratory (LBNL) and U.C. Berkeley with Prof. E. Iglesia in 2011 and at ETH Zurich, Switzerland with Prof. R. Prins in 2008. He received his Ph.D. in Physical Chemistry and his B.S. in Chemistry in 2006 and 2001, respectively, from Nankai University, China. He has experience in studies of reaction mechanisms and kinetics of catalytic hydrotreating (HDS and HDN) reactions on metal and sulfide surfaces, hydrogen management during hydrotreating catalysis, as well as catalyst development and characterization. His research in PNNL involves catalytic pyrolysis of biomass and catalytic hydrotreating and upgrading of bio-oil during transformation of biomass to fuels and chemicals.

Research Interests

  • Conversion of biomass and renewable feedstocks to fuels and chemicals.
  • Catalytic hydrotreating of biomass and fossil derived fuel products.
  • Reaction mechanism and chemical kinetic of heterogeneous catalytic reactions.
  • Design, synthesis, and characterization of inorganic solids useful as catalysts.

Education and Credentials

  • Ph.D. Physical Chemistry, Nankai University, China
  • B.S. Chemistry, Nankai University, China

PNNL Publications


  • Adarsh Kumar F., A. Kumar, D.M. Santosa, H. Wang, P. Zuo, C. Wang, and A. Mittal, et al. 2024. "Engineered Ru on HY Zeolite Catalyst for Continuous and Selective Hydrodeoxygenation of Lignin Phenolics to Cycloalkanes Under Moderate Conditions." Applied Catalysis A: General 676. PNNL-SA-195736. doi:10.1016/j.apcata.2024.119649
  • Wang H. 2024. Development of a Sulfur Tolerant CHG Process - CRADA 442 (Abstract). PNNL-35283. Richland, WA: Pacific Northwest National Laboratory.


  • Doll C.G., A.E. Plymale, M.J. O'Hara, C.J. Thompson, A.R. Cooper, H. Wang, and M.V. Olarte. 2023. "Demonstration of low-level biogenic fuel content using quench curve and direct liquid scintillation counting (LSC) methods." Fuel 334, no. Part 1:Art. No. 126468. PNNL-SA-173920. doi:10.1016/j.fuel.2022.126468
  • Dutta A., H. Cai, M. Talmadge, C. Mukarakate, K. Iisa, H. Wang, and D.M. Santosa, et al. 2023. "Model quantification of the effect of coproducts and refinery co-hydrotreating on the economics and greenhouse gas emissions of a conceptual biomass catalytic fast pyrolysis process." Chemical Engineering Journal 451, no. Part 1:Art. No. 138485. PNNL-SA-171094. doi:10.1016/j.cej.2022.138485


  • Guo M.F., G.B. Collinge, S.I. Allec, R.J. Rousseau, C.O. Brady, H. Wang, and J.L. Male. 2022. Stable Catalysts for Combined Dry and Steam Reforming of Methane and Carbon Dioxide. PNNL-32738. Richland, WA: Pacific Northwest National Laboratory. Stable Catalysts for Combined Dry and Steam Reforming of Methane and Carbon Dioxide
  • Lin F., M. Xu, K. Kallupalayam Ramasamy, Z. Li, J. Klinger, J. Schaidle, and H. Wang. 2022. "Catalyst Deactivation and its Mitigation during Catalytic Conversions of Biomass." ACS Catalysis 12, no. 21:13555-13599. PNNL-SA-175764. doi:10.1021/acscatal.2c02074
  • Lin F., Y. Lu, K. Unocic, S.E. Habas, M.B. Griffin, J. Schaidle, and H.M. Meyer III, et al. 2022. "Deactivation by Potassium Accumulation on a Pt/TiO2 Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis." ACS Catalysis 12, no. 1:465-480. PNNL-SA-168817. doi:10.1021/acscatal.1c02368
  • Santosa D.M., I.V. Kutnyakov, M.D. Flake, and H. Wang. 2022. "Coprocessing biomass fast pyrolysis and catalytic fast pyrolysis oils with vacuum gas oil in refinery hydroprocessing." Energy and Fuels 36, no. 20:12641-12650. PNNL-SA-175776. doi:10.1021/acs.energyfuels.2c02367


  • Cordon M., J. Zhang, S. Purdy, E. Wegener, K. Unocic, L.F. Allard, and M. Zhou, et al. 2021. "Selective butene formation in direct ethanol-to-C3+-olefin valorization over Zn-Y/Beta and single-atom alloy composite catalysts using in situ generated hydrogen." ACS Catalysis 11, no. 12:7193-7209. PNNL-SA-161914. doi:10.1021/acscatal.1c01136
  • Doll C.G., A.E. Plymale, A. Cooper, I.V. Kutnyakov, M.S. Swita, T.L. Lemmon, and M.V. Olarte, et al. 2021. "Determination of low-level biogenic gasoline, jet fuel, and diesel in blends using the direct liquid scintillation counting method for 14C content." Fuel 291. PNNL-SA-157538. doi:10.1016/j.fuel.2020.120084
  • Gurunathan P., D. Zhang, V. Glezakou, R.J. Rousseau, H. Wang, A.L. Church, and W. Beatrez, et al. 2021. "Computational and experimental study for the denitrification of biomass-derived hydrothermal liquefaction oil." ACS Sustainable Chemistry & Engineering 9, no. 40:13406-13413. PNNL-SA-161879. doi:10.1021/acssuschemeng.1c02824
  • Lin F., V. Dagle, A.D. Winkelman, M.H. Engelhard, L. Kovarik, Y. Wang, and Y. Wang, et al. 2021. "Understanding the Deactivation of Ag-ZrO2/SiO2 Catalysts for the Single-Step Conversion of Ethanol to Butenes." ChemCatChem 13, no. 3:999-1008. PNNL-SA-158105. doi:10.1002/cctc.202001488
  • Wu Y., F. Gao, H. Wang, L. Kovarik, B.J. Sudduth, and Y. Wang. 2021. "Probing acid-base properties of anatase TiO2 nanoparticles with dominant {001} and {101} facets using methanol chemisorption and surface reactions." Journal of Physical Chemistry C 125, no. 7:3988-4000. PNNL-SA-158674. doi:10.1021/acs.jpcc.0c11107
  • Yik E., D.D. Hibbitts, H. Wang, and E. Iglesia. 2021. "Hydrogenation and C-S bond activation pathways in thiophene and tetrahydrothiophene reactions on sulfur-passivated surfaces of Ru, Pt, and Re nanoparticles." Applied Catalysis B: Environmental 291. PNNL-SA-158133. doi:10.1016/j.apcatb.2020.119797


  • Agblevor F., H. Wang, S. Beis, K. Christian, A. Slade, O. Hietsoi, and D.M. Santosa. 2020. "Reformulated Red mud: a robust catalyst for in situ catalytic pyrolysis of biomass." Energy and Fuels 34, no. 3:3272-3283. PNNL-SA-150426. doi:10.1021/acs.energyfuels.9b04015
  • Akhade S.A., N. Singh, O.Y. Gutierrez-Tinoco, J.A. Lopez-Ruiz, H. Wang, J.D. Holladay, and Y. Liu, et al. 2020. "Electrocatalytic Hydrogenation of Biomass-Derived Organics: A review." Chemical Reviews 120, no. 20:11370-11419. PNNL-SA-155470. doi:10.1021/acs.chemrev.0c00158
  • Barpaga D., M. Shetty, J. Zheng, H. Wang, B.P. McGrail, and R.K. Motkuri. 2020. "Transition-Metal Nitroprussides Examined for Water Harvesting and Sorption Cooling." Inorganic Chemistry 59, no. 21:15620-15625. PNNL-SA-154900. doi:10.1021/acs.inorgchem.0c01740
  • Church A.L., M.Z. Hu, S. Lee, H. Wang, and J. Liu. 2020. "Selective adsorption removal of carbonyl molecular foulants from real fast pyrolysis bio-oils." Biomass & Bioenergy 136. PNNL-SA-150321. doi:10.1016/j.biombioe.2020.105522
  • Klinger J., D. Carpenter, V. Thompson, N. Yancey, R. Emerson, K. Gaston, and K.M. Smith, et al. 2020. "Pilot plant reliability metrics for grinding and fast pyrolysis of woody residues." ACS Sustainable Chemistry & Engineering 8, no. 7:2793-2805. PNNL-SA-150427. doi:10.1021/acssuschemeng.9b06718
  • Li Z., H. Wang, K.A. Magrini, J. Lee, T.J. Geeza, O.V. Maltsev, and J. Helper. 2020. "Quantitative Determination of Biomass-derived Renewable Carbon in Fuels from Coprocessing of Bio-oils in Refinery Using a Stable Carbon Isotopic Approach." ACS Sustainable Chemistry & Engineering 8, no. 47:17565-17572. PNNL-SA-157711. doi:10.1021/acssuschemeng.0c07323
  • Li Z., K.A. Magrini, H. Wang, O.v. Maltsev, T.J. Geeza, C.I. Mora, and J. Lee. 2020. "Tracking Renewable Carbon in Bio-oil/crude Co-processing with VGO Through 13C/12C Ratio Analysis†." Fuel 275. PNNL-SA-152626. doi:10.1016/j.fuel.2020.117770
  • Lin F., Y. Chen, L. Zhang, D. Mei, L. Kovarik, B.J. Sudduth, and H. Wang, et al. 2020. "Single-Facet Dominant Anatase TiO2 (101) and (001) Model Catalysts to Elucidate the Active Sites for Alkanol Dehydration." ACS Catalysis 10, no. 7:4268-4279. PNNL-SA-150163. doi:10.1021/acscatal.9b04654
  • Lu Y., Z. Zhang, F. Lin, H. Wang, and Y. Wang. 2020. "Single-atom automobile exhaust catalysts." ChemNanoMat 6, no. 12:1659-1682. PNNL-SA-155759. doi:10.1002/cnma.202000407
  • Santosa D.M., C. Zhu, F. Agblevor, B. Maddi, B.Q. Roberts, I.V. Kutnyakov, and S. Lee, et al. 2020. "In Situ Catalytic Fast Pyrolysis using Red Mud Catalyst: Impact of catalytic fast pyrolysis temperature and biomass feedstocks." ACS Sustainable Chemistry & Engineering 8, no. 13:5156-5164. PNNL-SA-150428. doi:10.1021/acssuschemeng.9b07439
  • Shi H., K. Kallupalayam Ramasamy, R. Ma, and H. Wang. 2020. "Nanoporous Catalysts for Biomass Conversion." In Nanoporous Materials for Molecule Separation and Conversion, edited by J. Liu and F. Ding. 387-440. PNNL-SA-152618. doi:10.1016/B978-0-12-818487-5.00012-1


  • Albrecht K.O., M.V. Olarte, and H. Wang. 2019. "Upgrading Fast Pyrolysis Liquids." In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition, edited by R.C. Brown. 207-255. Hoboken, New Jersey:John Wiley & Sons Ltd. PNNL-SA-130792. doi:10.1002/9781119417637.ch7
  • Zacher A.H., D.C. Elliott, M.V. Olarte, H. Wang, S.B. Jones, and P.A. Meyer. 2019. "Technology Advancements in Hydroprocessing of Bio-oils." Biomass & Bioenergy 125. PNNL-SA-138596. doi:10.1016/j.biombioe.2019.04.015


  • Griffin M.B., K. Iisa, H. Wang, A. Dutta, K.A. Orton, R. French, and D.M. Santosa, et al. 2018. "Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration." Energy & Environmental Science 11, no. 10:2904-2918. PNNL-SA-136791. doi:10.1039/C8EE01872C
  • Olarte M.V., J.J. Bravo-Suarez, H. Wang, and F. Tao. 2018. "Preface." Catalysis Today 302. PNNL-SA-138643. doi:10.1016/j.cattod.2017.11.015
  • Prodinger S., H. Shi, H. Wang, M.A. Derewinski, and J.A. Lercher. 2018. "Impact of Structural Defects and Hydronium Ion Concentration on the Stability of Zeolite BEA in Aqueous Phase." Applied Catalysis B: Environmental 237. PNNL-SA-133584. doi:10.1016/j.apcatb.2018.06.065
  • Shi D., H. Wang, L. Kovarik, F. Gao, C. Wan, J.Z. Hu, and Y. Wang. 2018. "WOx supported on gamma-Al2O3 with different morphologies as model catalysts for alkanol dehydration." Journal of Catalysis 363. PNNL-SA-132764. doi:10.1016/j.jcat.2018.04.004
  • Wang H. 2018. "STABILIZATION OF BIO-OIL TO ENABLE ITS HYDROTREATING TO PRODUCE BIOFUELS." In Hydroprocessing Catalysts and Processes: The Challenges for Biofuels Production, edited by B Zhang and D Seddon. 57-76. London:World Scientific Publishing. PNNL-SA-129878.
  • Wang H., H. Wang, E. Kuhn, M.p. Tucker, and B. Yang. 2018. "Production of Jet Fuel Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts." ChemSusChem 11, no. 1:285-291. PNNL-SA-129978. doi:10.1002/cssc.201701567


  • Li Z., J. Choi, H. Wang, A.W. Lepore, R.M. Connatser, S. Lewis, and H. Meyer, et al. 2017. "Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-Oil." Energy and Fuels 31, no. 9:9585-9594. PNNL-SA-128200. doi:10.1021/acs.energyfuels.7b01707


  • Choi J., A.H. Zacher, H. Wang, M.V. Olarte, B.L. Armstrong, H. Meyer, and I. Soykal, et al. 2016. "Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil." Green Chemistry 30, no. 6:5016-5026. PNNL-SA-116507. doi:10.1021/acs.energyfuels.6b00937
  • Wan C., M.Y. Hu, N.R. Jaegers, D. Shi, H. Wang, F. Gao, and Z. Qin, et al. 2016. "Investigating the Surface Structure of ?-Al2O3 Supported WOx Catalysts by High-Field 27Al MAS NMR and Electronic Structure Calculations." Journal of Physical Chemistry C 120, no. 40:23093-23103. PNNL-SA-119580. doi:10.1021/acs.jpcc.6b09060
  • Wang H., and Y. Wang. 2016. "Characterization of deactivated bio-oil hydrotreating catalysts." Topics in Catalysis 59, no. 1:65-72. PNNL-SA-110629. doi:10.1007/s11244-015-0506-6
  • Wang H., D.C. Elliott, R. French, S. Deutch, and K. Iisa. 2016. "Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating." Journal of Visualized Experiments. PNNL-SA-120446. doi:10.3791/54088
  • Wang H., S. Lee, M.V. Olarte, and A.H. Zacher. 2016. "Bio-oil stabilization by hydrogenation over reduced metal catalysts at low temperatures." ACS Sustainable Chemistry & Engineering 4, no. 10:5533-5545. PNNL-SA-118919. doi:10.1021/acssuschemeng.6b01270


  • Elliott D.C., H. Wang, M. Rover, L. Whitmer, R. Smith, and R.C. Brown. 2015. "Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover." ACS Sustainable Chemistry & Engineering 3, no. 5:892-902. PNNL-SA-107518. doi:10.1021/acssuschemeng.5b00015
  • Schwaiger N., D.C. Elliott, J. Ritzberger, H. Wang, P. Pucher, and M. Siebenhofer. 2015. "Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil." Green Chemistry 17, no. 4:2487-2494. PNNL-SA-106757. doi:10.1039/c4gc02344g
  • Wang H., H. Ruan, H. Pei, H. Wang, X. Chen, M.p. Tucker, and J.R. Cort, et al. 2015. "Biomass-derived Lignin to Jet Fuel Range Hydrocarbons via Aqueous Phase Hydrodeoxygenation." Green Chemistry 17, no. 12:5131-5135. PNNL-SA-112582. doi:10.1039/C5GC01534K
  • Weber R.S., M.V. Olarte, and H. Wang. 2015. "Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil." Energy and Fuels 29, no. 1:273-277. PNNL-SA-106604. doi:10.1021/ef502483t


  • Elliott D.C., H. Wang, R. French, S. Deutch, and K. Iisa. 2014. "Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil." Energy and Fuels 28, no. 9:5909-5917. PNNL-SA-103801. doi:10.1021/ef501536j
  • Lercher J.A., A.M. Appel, T. Autrey, R.M. Bullock, D.M. Camaioni, H.M. Cho, and D.A. Dixon, et al. 2014. "Multifunctional Catalysts to Synthesize and Utilize Energy Carriers." In Frontiers at the Interface between Homogeneous and Heterogeneous Catalysis, II, 207-219. Washington, District Of Columbia:U.S. Department of Energy, Office of Science. PNNL-SA-103068.
  • Liu C., H. Wang, A.M. Karim, J. Sun, and Y. Wang. 2014. "Catalytic fast pyrolysis of lignocellulosic biomass." Chemical Society Reviews 43, no. 22:7594-7623. PNNL-SA-102422. doi:10.1039/c3cs60414d


  • Laskar D., B. Yang, H. Wang, and G.J. Lee. 2013. "Pathways for Biomass-Derived Lignin to Hydrocarbon Fuels." Biofuels, Bioproducts & Biorefining 7, no. 5:602-626. PNNL-SA-96098. doi:10.1002/bbb.1422
  • Wang H., and Y. Wang. 2013. "BIOMASS TO BIO-OIL BY LIQUEFACTION." In Biomass Processing, Conversion and Biorefinery, edited by B Zhang and Y Wang. 153-166. Huntington, New York:Nova Science Publishers, Inc. PNNL-SA-93389.
  • Wang H., J.L. Male, and Y. Wang. 2013. "Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds." ACS Catalysis 3, no. 5:1047-1070. PNNL-SA-93343.

Energy and Environment

Core Research Areas