Skip to Main Content U.S. Department of Energy
Energy and Environment Directorate

Aaron Hollas

Aaron Hollas

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352
(509) 375-4449

Biography

Aaron Hollas joined PNNL in 2016 as a Post-Doctorate Research Associate. His work has focused on the development of new redox-active organic molecules for use in aqueous flow batteries. This research encompasses synthetic methodology, fundamental electrochemistry, and the optimization of flow cell conditions.

Research Interests

  • Organic and inorganic synthesis
  • Electrochemistry
  • Energy Storage

Education and Credentials

  • Ph.D., Chemistry, University of California - Irvine, July 2016
  • B.S., Chemistry, Texas A&M University, May 2010

PNNL Patents

PNNL Publications

2024

  • Chen Y., C. Zeng, Y. Fu, J. Bao, P. Gao, J.Q. Chen, and Z. Xu, et al. 2024. Evaluating large scale aqueous organic redox flow battery performance with a hybrid numerical and machine learning framework. PNNL-36650. Richland, WA: Pacific Northwest National Laboratory. Evaluating large scale aqueous organic redox flow battery performance with a hybrid numerical and machine learning framework
  • Hollas A.M., A.C. Tuan, V.V. Viswanathan, and I. Ragazzi. 2024. Adoption Readiness Level Assessment of Redox Flow Batteries. PNNL-36780. Richland, WA: Pacific Northwest National Laboratory. Adoption Readiness Level Assessment of Redox Flow Batteries
  • Nambafu G.S., A.M. Hollas, S. Zhang, P.S. Rice, D. Boglaienko, J.L. Fulton, and M. Li, et al. 2024. "Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery." Nature Communications 15. PNNL-SA-191088. doi:10.1038/s41467-024-45862-3
  • Sun W., N. Kim, A. Ebrahim, S. Sharma, A.M. Hollas, Q. Huang, and D.M. Reed, et al. 2024. "Coupled experimental-theoretical characterization of a carbon electrode in vanadium redox flow batteries using X-ray absorption spectroscopy." ACS Applied Materials & Interfaces 16, no. 7:8791-8801. PNNL-SA-193736. doi:10.1021/acsami.3c17049

2023

  • Feng R., Y. Chen, X. Zhang, B. Rousseau, P. Gao, P. Chen, and S.T. Mergelsberg, et al. 2023. "Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte." Joule 7, no. 7:1609-1622. PNNL-SA-174628. doi:10.1016/j.joule.2023.06.013
  • Kumar N., W. Rishko, K.R. Fiedler, A.M. Hollas, J. Chun, and S. Johnson. 2023. "Correlations between molecular structure, solvation topology, and transport properties of aqueous organic flow battery electrolyte solutions." ACS Materials Letters 5, no. 11:3050-3057. PNNL-SA-188569. doi:10.1021/acsmaterialslett.3c00838
  • Liang Y., H.M. Job, R. Feng, F.C. Parks, A.M. Hollas, X. Zhang, and M.E. Bowden, et al. 2023. "High-throughput solubility determination for data-driven materials design and discovery in redox flow battery research." Cell Reports Physical Science 4, no. 10:Art. No. 101633. PNNL-SA-182963. doi:10.1016/j.xcrp.2023.101633

2022

  • Gao P., A. Andersen, J.P. Sepulveda, G.U. Panapitiya, A.M. Hollas, E.G. Saldanha, and V. Murugesan, et al. 2022. "SOMAS: a platform for data-driven material discovery in redox flow battery development." Scientific Data 9. PNNL-SA-161978. doi:10.1038/s41597-022-01814-4
  • Panapitiya G.U., M.K. Girard, A.M. Hollas, J.P. Sepulveda, V. Murugesan, W. Wang, and E.G. Saldanha. 2022. "Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction." ACS Omega 7, no. 18:15695-15710. PNNL-SA-161618. doi:10.1021/acsomega.2c00642

2021

  • Feng R., X. Zhang, V. Murugesan, A.M. Hollas, Y. Chen, Y. Shao, and E.D. Walter, et al. 2021. "Reversible Ketone Hydrogenation and Dehydrogenation for Aqueous Organic Redox Flow Batteries." Science 372, no. 6544:836-840. PNNL-SA-154606. doi:10.1126/science.abd9795
  • Gao P., X. Yang, Y. Tang, M. Zheng, A. Andersen, V. Murugesan, and A.M. Hollas, et al. 2021. "Graphical Gaussian Process Regression Model for Aqueous Solvation Free Energy Prediction of Organic Molecules in Redox Flow Battery." Physical Chemistry Chemical Physics 23, no. 43:24892-24904. PNNL-SA-161057. doi:10.1039/D1CP04475C
  • Nambukara Wellala N.P., A.M. Hollas, K. Duanmu, V. Murugesan, X. Zhang, R. Feng, and Y. Shao, et al. 2021. "Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes." Journal of Materials Chemistry A 9, no. 38:21918-21928. PNNL-SA-161713. doi:10.1039/D1TA03655F

2018

  • Duan W., B. Li, D. Lu, X. Wei, Z. Nie, V. Murugesan, and J.P. Kizewski, et al. 2018. "Towards an All-Vanadium Redox Flow Battery with Higher Theoretical Volumetric Capacities by Utilizing the VO2+/V3+ Couple." Journal of Energy Chemistry 27, no. 5:1381-1385. PNNL-SA-127931. doi:10.1016/j.jechem.2018.05.020
  • Hollas A.M., X. Wei, V. Murugesan, Z. Nie, B. Li, D.M. Reed, and J. Liu, et al. 2018. "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries." Nature Energy 3, no. 6:508-514. PNNL-SA-130788. doi:10.1038/s41560-018-0167-3
  • Huang J., Z. Yang, V. Murugesan, W. Duan, A.M. Hollas, B. Pan, and W. Wang, et al. 2018. "A Two-Electron Storage Nonaqueous Organic Redox Flow Battery." Advanced Sustainable Systems 2, no. 3:1700131. PNNL-SA-128375. doi:10.1002/adsu.201700131

2017

  • Wei X., W. Pan, W. Duan, A.M. Hollas, Z. Yang, B. Li, and Z. Nie, et al. 2017. "Materials and Systems for Organic Flow Batteries: Status and Challenges." ACS Energy Letters 2, no. 9:2187-2204. PNNL-SA-128015. doi:10.1021/acsenergylett.7b00650

Energy and Environment

Core Research Areas

Contacts